The removal of trace organic compounds through membrane bioreactors (MBR) in comparison to a conventional wastewater treatment plant (WWTP) in a long term study was investigated. Two MBR pilot plants were operated in parallel to a full-scale WWTP, fed with the same municipal raw waste water. Bulk organic parameters such as COD and TOC, high polar compounds (phenazone-type pharmaceuticals, their metabolites and carbamazepine), and less polar estrogenic steroids (estradiol, estrone and ethinylestradiol) were quantified. The removal rate of phenazone, propyphenazone and formylaminoantipyrine by the conventional WWTP was below 15 %. Significant higher removal rates (60-70 %) started to be clearly monitored with the pilot plants after about 5 months. The removal of the drug metabolite acetylaminoantipyrine during conventional treatment was below 30 % and reached 70 % in both pilot plant. Higher removal rates coincided here with higher temperatures at the summer time. Carbamazepine was not removed during conventional and membrane activated sludge treatment.The conventional WWTP removed in average more than 90 % of the natural steroids estrone and estradiol and about 80 % of the synthetic ethinylestradiol. The elimination of estradiol and estrone by the MBR processes were of about 99 % and Ethinylestradiol was removed by about 95 %.
Long term comparison of trace organics removal performances between conventional and membrane activated sludge processes