@Techreport{RN910, Author = {Huber, A. and de la Loma Gonzalez, B. and Sprenger, C. and Plattner, J. and Stamm, L. and Hüsch, R. and Hannappel, S.}, Institution = {KWR Water Research Institute}, Title = {D12.2 Pre-requisites and design criteria for new MAR systems in compliance with EU WFD and GWD (including pre-treatment)}, Year = {2015}, Abstract = {This project report summarizes work conducted in work package 12 of the DEMEAU project. Along with Deliverable 12.1 it covers all tasks from work package 12 as formulated in the Description of Work (DoW). This report contains information about (pre-) feasibility studies, design recommendations and pre-treatment options for different types of MAR. The wide range of hydrogeological features encountered in reality makes a site-by-site approach indispensable. As part of this effort the hydrogeological pre-requisites for surface spreading and deep well injection techniques are described in detail. In chapter 2, ten essential hydrogeological parameters are defined by objective criterias. The following chapter outlines and describes how to obtain these essential hydrogeological parameters. This feasibility assessment starts with the screening of the potential site based on a structured procedure. Site investigations start with relatively cheap but numerous field and laboratory testing and continue to more cost-demanding but less numerous tests. With this procedure it is possible to carry out technical site feasibility in a costand time efficient way. The fourth chapter investigates the International Hydrogeological Map of Europe (IHME 1500) as a planning basis for pre-feasibility of new MAR sites. It was found that the IHME 1500 is useful for a pre-assessment, but detailed regional and local scale maps (and investigations) are additionally necessary to effectively assess hydrogeological features. The final chapter deals with pre-treatment options for MAR. Pre-treatment is necessary to remove critical contaminants from the source water to i) enhance system performance and removal efficiencies, ii) ensure the long-term functioning of the system, iii) meet regulatory demands and iv) ensure beneficial uses of the aquifer beyond the attenuation zone. Available pre-treatment methods in relation to source water type and intended end-use are described. Based on chemical concentrations in source water and intended end-use the most appropriate pre-treatment method can be assessed from a table. Altogether this report thus provides guidance in designing new MAR systems based on a sound hydrogeological site characterisation and pre-feasibility assessment based on available information and parameters obtained from structured investigations.}, Project = {demeau}, En_type = {Report}, Access = {public}, Url = {https://publications.kompetenz-wasser.de/pdf/Huber-2015-910.pdf}, en_id = {910} }