Ohne uns läuft nix.

DWC: Suche nach Falschanschlüssen in der Regenwasserkanalisation mit mobiler Sensorik und Datenanalyse

50. Berliner Wasserwerkstatt

Agenda

Geben Sie Ihren Untertitel ein

Falschanschlüsse

Methoden der Falschanschlusssuche

DWC - Methode: Leitfähigkeit (und DTS)

Zwischenergebnisse der Messkampagne

Weiteres Vorgehen

Falschanschluss

Fehlerhafte Hausanschlüsse in der Trennkanalisation werden als Fehl- bzw. Falschanschlüsse bezeichnet.

- Fehlanschluss: Regenwasser an Schmutzkanal
- Falschanschluss: Schmutzwasser an Regenkanal
 - → Kommunales Abwasser wird ungeklärt in die Natur entlassen
 - → Eintrag von Keimen, eutrophierenden Nährstoffen und Schadstoffen in die Gewässer

DWC - Falschanschlüsse 10.11.2021

Falschanschlusssuche

Konventionelle Methoden

Methode	Durchführung	Nachteile		
Probenahmen	Gezielte Probenahmen und Laboranalytik.	 Stichprobenartige Untersuchung Sehr hoher zeitlicher und organisatorischer Aufwand 		
Deckeln	Öffnen der Schächte im betroffenen Gebiet und visuelle sowie olfaktorische Inspektion.	Stichprobenartige UntersuchungHoher zeitlicher Aufwanddiskontinuirlich		
Sandsäcke	Anstauen des Trockenwetternstromes und visuelle Überprüfung.	Hoher zeitlicher Aufwandnicht immer eindeutigzwischenzeitlicher Regen verändert Ergebnis		
TV-Inspektionen	Befahrung der Regenkanalisation mit einer mobilen Videokamera.	 Falschanschlüsse nicht im Fokus der TV-Auswertung diskontinuierlich sehr hoher Aufwand 		
Nebeln / Rauch	Inerter Rauch wird durch die Regenkanalisation geblasen und die Orte des Austritts detektiert.	nur in Fokusgebieten möglichHoher organisatorischer Aufwand		
Färbungsmittel	Zugabe eines Farbstoffes in den Abwasserstrom eines Hausanschlusses und Inspektion in der Regenkanalisation auf diesen Farbstoff.	nur in Fokusgebieten möglichHoher organisatorischer Aufwand		
	Ein "negatives" Ergebnis kann keine Entwarnung geben			

FE-Projekte

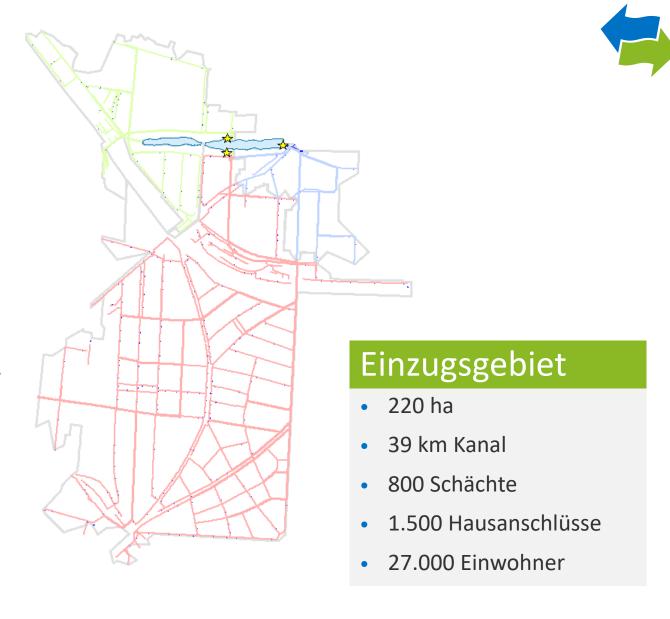
Erfahrungen und Erkenntnisse mit der Fehlanschlusssuche

FLUSSHYGIENE

- Falschanschlüsse wurden als relevanter Eintragspfad Schmutzwasser in die Vorfluter diagnostiziert
- elektrische Leitfähigkeit als Indikator für Schmutzwassereinflüsse im Regenwasser
- Messkampagne im Gebiet der Bäke
 - systematische stichprobenartige Probenahmen und Leitfähigkeitsmessung
 - eindeutiger Messwert, jedoch limitierte Methode aufgrund von Diskontinuität
- DWC digital.water.city
 - 2-stufige Methode zur Falschanschlusssuche

Schritt 1: Eingrenzen

Hot-Spot-Screening / Systematische Eingrenzung relevanter Teilgebiete mit mobiler Sensorik


Schritt 2: Identifizieren

Lokalisierung der Hausanschlüsse innerhalb eines Hot-Spots mittels DTS (faseroptische Temperaturmessung)

Fennsee

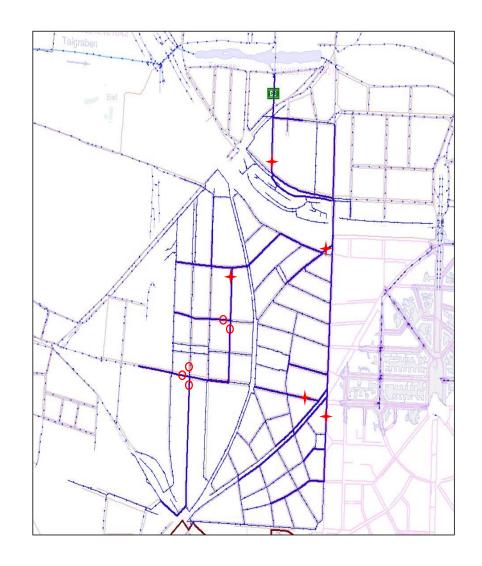
Untersuchungsgebiet

- 1903 als langgestrecktes, naturnahes Regenrückhaltebecken künstlich angelegt
 - Hohe Belastung an Schadstoffen, eutrophierenden Nährstoffen und Keimen
- vorhandener Lamellenabscheider zur Regenwasserbehandlung in der Wallenbergstraße
 - Keine erfolgreiche Reinigungsleistung, u.a. aufgrund von Schmutzwassereinfluss

Schritt 1 - Leitfähigkeitsmessungen

Methodik

- Leitfähigkeit:
 - Regenwasser LF < 200 μ S/cm
 - Schmutzwasser LF > $1000 \mu S/cm$
- Kontinuierliche Messung im Schacht bei Trockenwetter und Regenwetter
- Messzeitraum je Schacht 4 Wochen
- Anstauen des Abflusses mit Sandsack
- 2 verschiedene Sensorsysteme: KANDO und ORI mit je 5 Sensoren
- Messintervall 1 bzw. 5 Minuten
- Wartung alle 1-2 Wochen (Akkuwechsel, Datenauslesen)

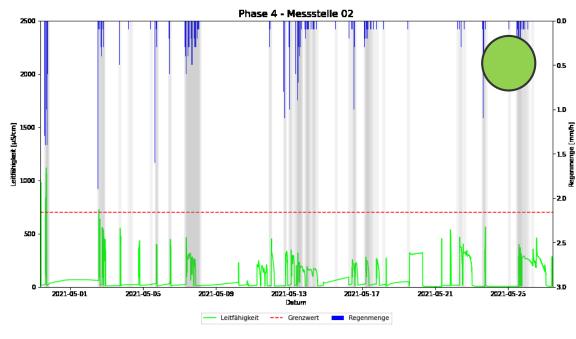


Kampagnenplanung

Methodik

- Beginn am RW-Auslass um relevantes Teilgebiet zu identifizieren
- Kanalnetz anhand der Auslässe in Teilgebiete differenzieren
- GIS-Analyse
 - → Abbildung der Kanäle abgestuft nach der Nennweite
 - → Einteilung in kleinere Teilgebiete anhand von Hauptsammlern und Fließwegen
 - → Identifizierung von Schlüsselschächten im Kanalnetz
- systematisch Untersuchung rückwärts durchs Kanalnetz

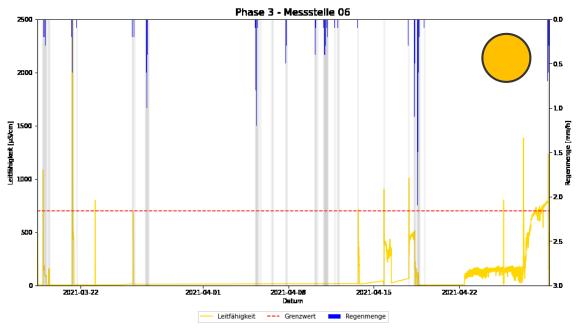
Leitfähigkeitsdaten


- Datenauswertung zur Wahrscheinlichkeit für das vorhanden sein von Falschanschlüssen im davor liegenden Einzugsgebiet
 - Berücksichtigung von Regendaten → Datenauswertung nur bei Trockenwetter
 - Identifizierung relevanter Peaks → Anzahl relevanter Peaks

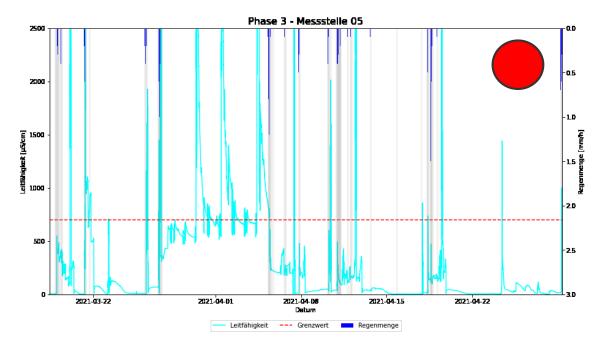
Ampelsystem	Anzahl Peaks > 700 μS/cm / 4 Wochen	Bedeutung		
	> 4 (oder Peak > 5.000 μS/cm)	FA wahrscheinlich		
	2 - 4	FA möglich		
	0 - 1	FA unwahrscheinlich		

14.10.2021 Michel Gunkel – BWB-FE

Leitfähigkeitsdaten



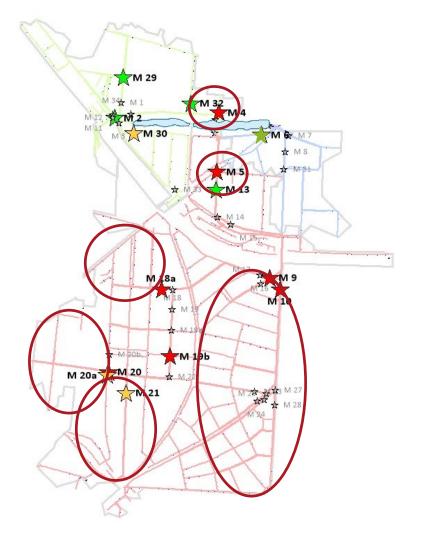
Ampelsystem	Anzahl Peaks > 700 μS/cm / 4 Wochen	Bedeutung		
	> 4 (oder Peak > 5.000 μS/cm)	FA wahrscheinlich		
	2 - 4	FA möglich		
	0 - 1	FA unwahrscheinlich		


Leitfähigkeitsdaten

Ampelsystem	Anzahl Peaks > 700 μS/cm / 4 Wochen	Bedeutung		
	> 4 (oder Peak > 5.000 μS/cm)	FA wahrscheinlich		
	2 - 4	FA möglich		
	0 - 1	FA unwahrscheinlich		

Leitfähigkeitsdaten

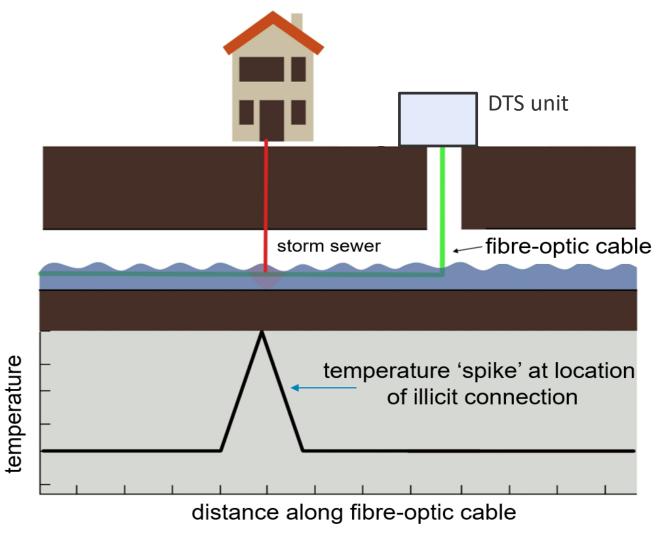
Ampelsystem	Anzahl Peaks > 700 μS/cm / 4 Wochen	Bedeutung		
	> 4 (oder Peak > 5.000 μS/cm)	FA wahrscheinlich		
	2 - 4	FA möglich		
	0 - 1	FA unwahrscheinlich		



Auswertung

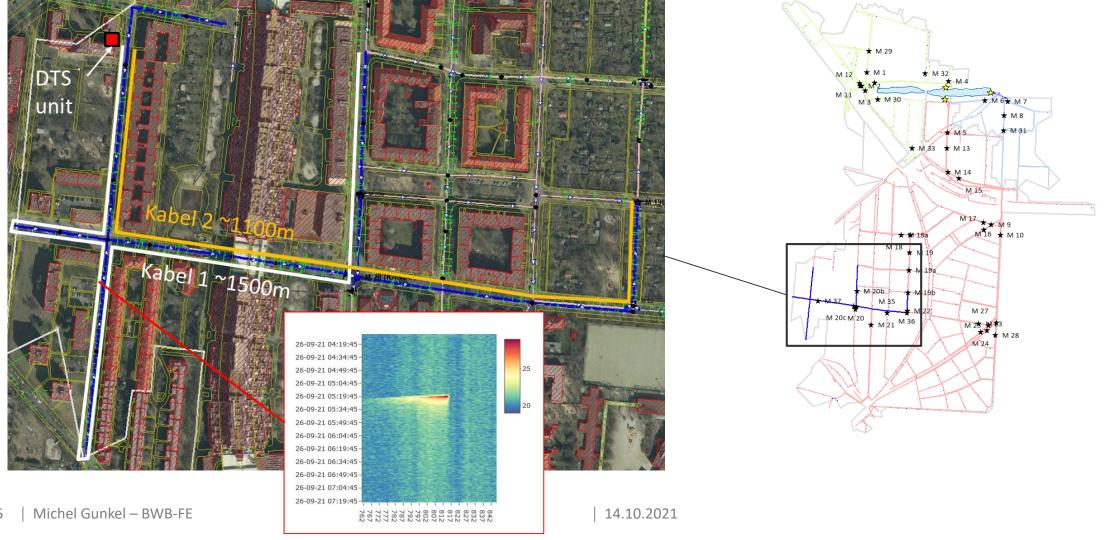
Bisherige Ergebnisse

	Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
	29.01.21 -	18.02.21 -	18.03.21 -	30.04.21 -	27.05.21 -	25.06.21 -	13.08.21 -
	18.02.21	18.03.21	29.04.21	27.05.21	25.06.21	13.08.21	16.09.21
	green area - northwest						
M 4							-
M 2	-	-			-	-	-
M 29	-	-			-	-	-
M 30	-	-				-	-
M 32	-	-	-	-		-	-
			red are	ea - south			-
M 5							
M 9	-	-					
M 10	-	-			-	-	-
M 13	-	-	-	-			-
M 18a	-	-	-	-			
M 19b	-	-	-	-			
M 20	-	-	-	-	-		
M 20a	-	-	-	-	-		
M 21	-	-	-	-	-		
blue area - east							
M 6				-	-	-	-



Schritt 2 – DTS

Messprinzip



- Temperaturmessung im Kanal
- Messpunkte alle 20 cm
- Messintervall: 1 Minute

Untersuchungsgebiet DTS

Auswahl auf Grundlage der Leitfähigkeitsuntersuchungen

Weiteres Vorgehen

DWC

- DWC-Projektlaufzeit noch bis 11/2022
- Leitfähigkeitsmessungen:
 - Weitere Eingrenzung der Hot-Spots in den nächsten Monaten
 - Skript zur automatisierten Auswertung der LF-Daten im Ampelsystem
- DTS-Kampagne:
 - **-** 23.09.2021 29.10.2021
 - Auswertung nach Ausbau der Messkabel
- Berechnung von KPI's, um den Mehrwert der Methode zu quantifizieren
- Gespräche mit dem BWB-Betrieb zu Möglichkeiten der Integration der Methodik in die betriebliche Praxis

Michel Gunkel – BWB-FE

Vielen Dank für Ihre Aufmerksamkeit

Michel Gunkel

BWB-FE

michel.gunkel@bwb.de