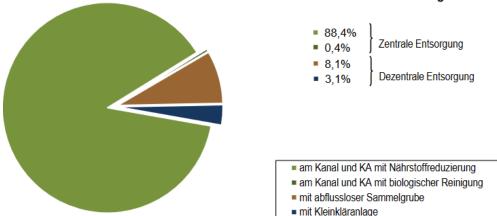


DeWaResT

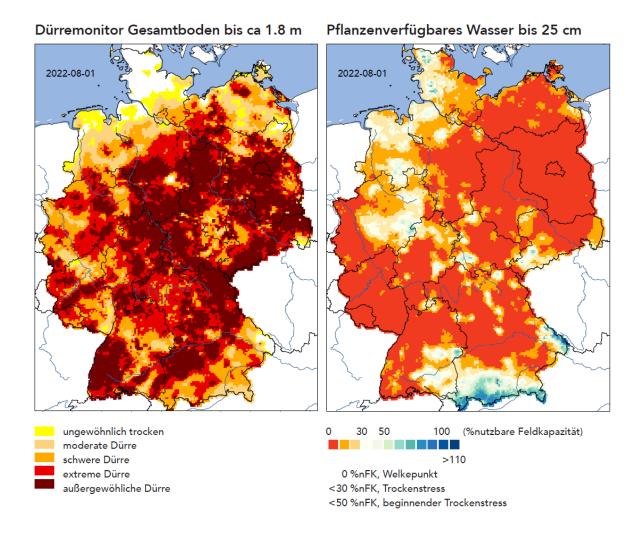
Dezentrale Abwasserbehandlung und **Wa**sserwiederverwendung für **Re**gionen mit **s**aisonalem **T**rockenstress

WasserWerkstatt 11.03.2025 Jan Schütz

Motivation


Wasserknappheit

Demographie Dürre Klimawandel


Anschlussgrad

Auslastung KA

Prozentualer Anteil der Brandenburger Einwohner

Quelle: MLUK Brandenburg (2021) Kommunale Abwasserbeseitigung im Land Brandenburg. https://mluk.brandenburg.de/

Quelle: UFZ (2022); Dürrezustand Gesamtboden bis ca. 1,8 m (links) und pflanzenverfügbares Wasser bis 25 cm. https://www.ufz.de/index.php?de=37937

Motivation

Pilotstandort

Quelle: Naturcampingplatz Pehlitzwerder https://naturcampingplatz-pehlitzwerder.jimdosite.com/

DeWaResT

De \rightarrow **Dezentrale Abwasserreinigung:** Alternative zu abflusslosen Gruben in ländlichen Regionen

Wa \rightarrow **Wasserwiederverwendung:** Wasserknappheit durch die Wiederverwendung von gereinigtem Abwasser verringern

ResT → Regionen mit saisonalen Trockenstress: Viele Regionen auf der Welt leiden unter **Trockenstress**

→ Übertragbarkeit

Ziele

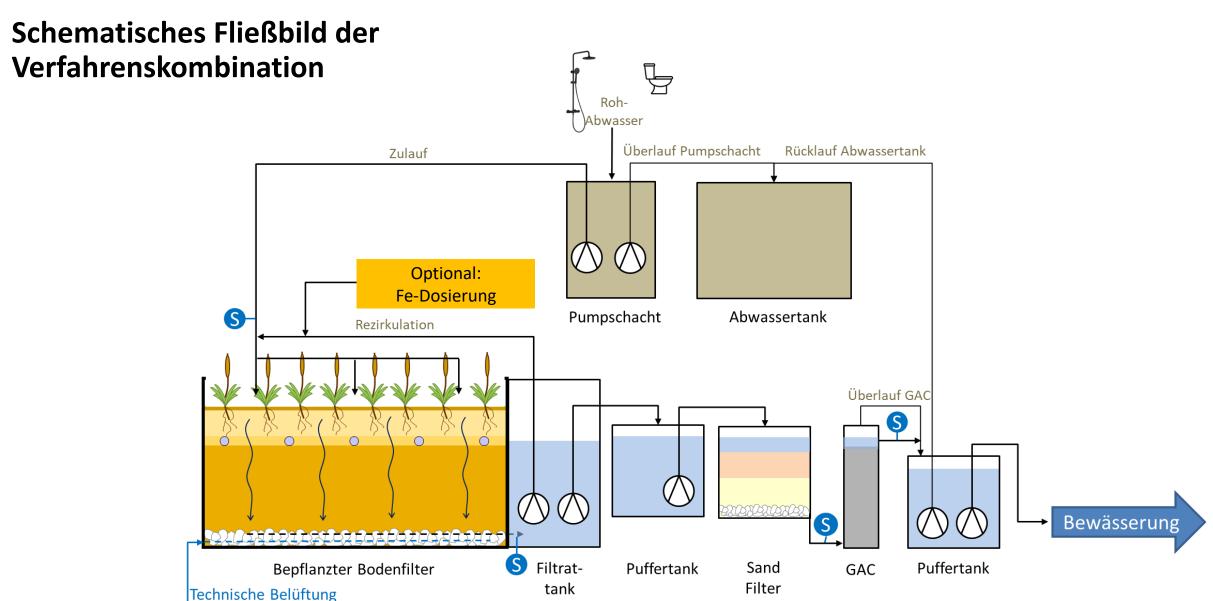
- 1. Entwicklung Bodenfilters (BBF)
 - Rohabwasser
 - Zweistufig, vertikal durchflossen
 - Kleiner Flächenbedarf
 1 m²/EW
 - Hohe Reinigungsleistung

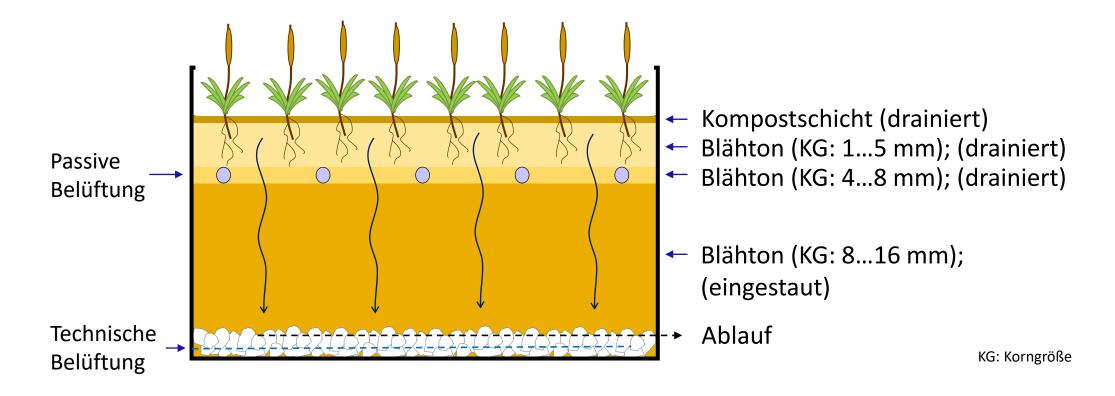
Internes Qualitätsziel chemische Parameter

- CSB < 75 mg/L
- BSB_5 < 15 mg/L
- NH_4 -N < 10 mg/L
- N_{anorg} < 25 mg/L
- TP < 2 mg/L

Quelle:

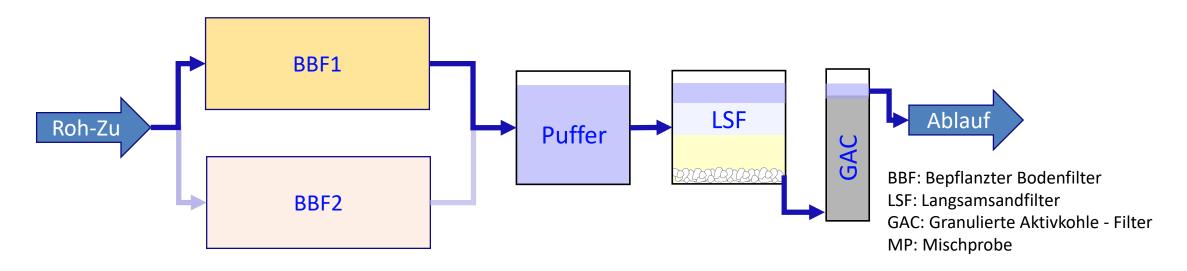
DWA (2019): DWA Arbeitsblatt A-221: Grundsätze für die Verwendung von Kleinkläranlagen.

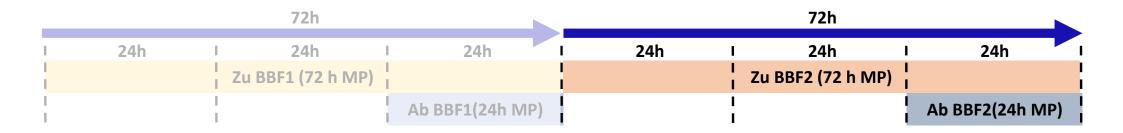

- Nachweis Eignung zur Wasserwiederverwendung
- 3. Spurenstoffentfernung

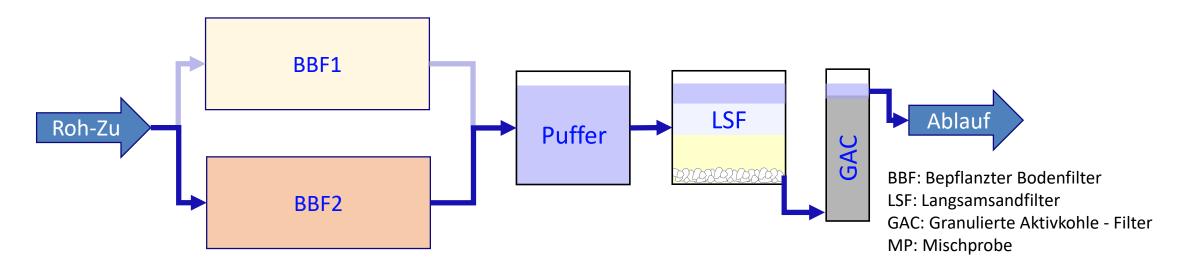

Internes Qualitätsziel Mikrobiologie

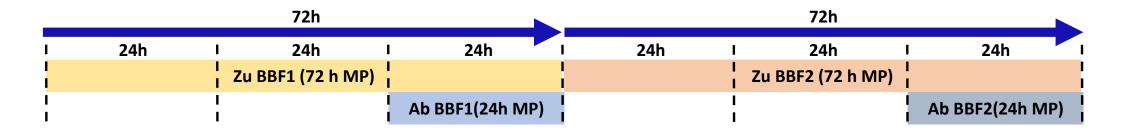
- (B) *E. coli* < 100 MPN /100 mL
- (C) *E. coli* < 1000 MPN /100 mL
- (D) *E. coli* < 10000 MPN /100 mL

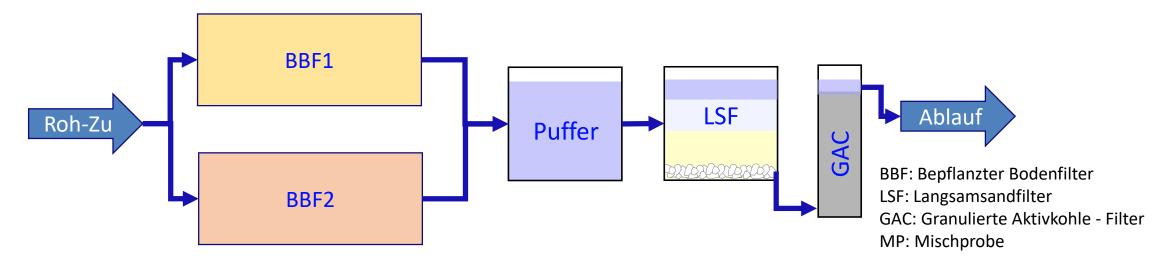

Quelle:

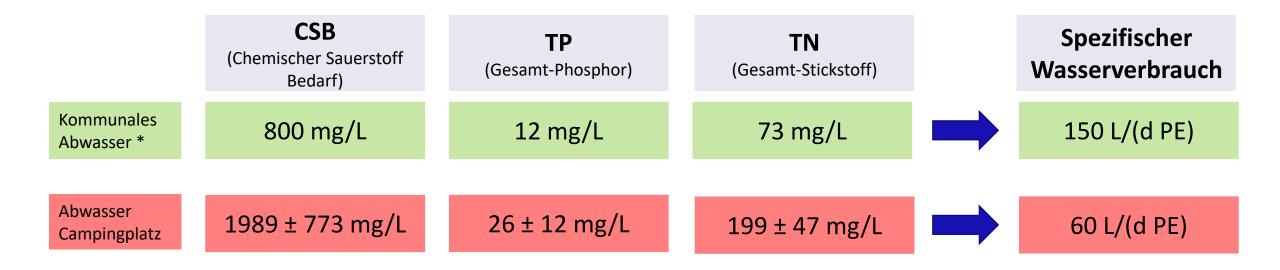

EU 2020/741 (2020): Mindestanforderungen an die Qualität des aufbereiteten Wassers entsprechend Verordnung (EU) 2020/741






- Vertikaler Mehrschichtaufbau
- Denitrifikation und Nitrifikation sind in einer Stufe integriert
- Geringerer spezifischer Flächenbedarf als konventionelle BBF





- Maximaler Zulauf \rightarrow 1.1 m 3 /d \rightarrow HRT \cong 4 d bei 1.1 m 3 /d
- Rezirkulation → R = 200 %
- Belüftungszeit pro Tag → AT = 12 h/d

Abwasserzusammensetzung im Zulauf

- → Sehr hohe Zulaufkonzentration im Gegensatz zu typischen kommunalen Rohabwasser
- → Sehr geringer spezifischer Wasserverbrauch → ca. 60 L/d
- \rightarrow CSB/BSB \approx 3

Quelle: *ATV-DVWK-A 131, 2000

Effizienz Standardparameter 2022

	Jahr 2022	CSB [mg/L]	P _{ges} [mg/L]	TN [mg/L]	NH ₄ -N [mg/L]	NO ₃ -N [mg/L]	NO ₂ -N [mg/L]	N _{anorg.} [mg/L]
BBF1	Mittelwert	66 ± 26	1,0 ± 0,7	79 ± 11	12 ± 22	48 ± 27	2 ± 2	62 ± 25
	Anzahl	10	10	9	11	10	10	10
	Effizienz [%]	97%	96%	60%	90%	-	-	47%
BF2	Mittelwert	64 ± 33	1,0 ± 0,3	77 ± 32	11 ± 17	46 ± 28	6 ± 6	63 ± 26
	Anzahl	11	11	11	12	12	11	11
B	Effizienz [%]	97%	98%	61%	90%	-	-	46%
		\odot	\odot	\odot	\odot			\odot

Optimierung:

- → Optimierung der Belüftung (Kapazitätserweiterung, Belüftungszeit, Verlegung der Belüftung in die Nachtstunden)
- → Optimierung der Rezirkulation
- → Verbesserung der Kohlenstoffverfügbarkeit:
 - → **BBF1:** Erhöhung des eingestauten Filtervolumens
 - → BBF2: Erweiterung durch vorgeschaltete Konditionierung

Effizienz Standardparameter 2023

	Jahr 2023	CSB [mg/L]	P _{ges} [mg/L]	TN [mg/L]	NH ₄ -N [mg/L]	NO ₃ -N [mg/L]	NO ₂ -N [mg/L]	N _{anorg.} [mg/L]
BBF1	Mittelwert	42 ± 22	1,1 ± 0,8	37 ± 18	6 ± 6	21 ± 13	$0,4 \pm 0,2$	27 ± 12
	Anzahl	14	13	14	14	14	13	14
	Effizienz [%]	98%	96%	81%	95%	-	-	77%
BBF2	Mittelwert	58 ± 18	1,5 ± 0,9	29 ± 8	7 ± 7	16 ± 10	0.3 ± 0.3	23 ± 9
	Anzahl	13	12	13	13	13	13	13
	Effizienz [%]	97%	94%	85%	94%	-	-	78%
		\odot	\odot	•	\odot	•••	\odot	•••

Optimierung:

- → Finetuning der Belüftung
- → Eisen-III-Chlorid Dosierung zur Optimierung des Phosphorrückhalts

Effizienz Standardparameter 2024

	Jahr 2023	CSB [mg/L]	P _{ges} [mg/L]	TN [mg/L]	NH ₄ -N [mg/L]	NO ₃ -N [mg/L]	NO ₂ -N [mg/L]	N _{anorg.} [mg/L]
	Mittelwert	56 ± 15	0,6 ± 0,3	21 ± 8	11 ± 7	7 ± 4	0,2 ± 0,2	18 ± 7
BF	Anzahl	10	9	10	11	11	10	10
8	Effizienz [%]	97%	98%	89%	90%	-	-	83%
BBF2	Mittelwert	68 ± 29	1,4 ± 0,9	20 ± 8	10 ± 6	7 ± 4	0,1 ± 0,1	17 ± 9
	Anzahl	5	6	6	6	6	5	5
	Effizienz [%]	97%	95%	90%	91%	-	-	85%

 \odot

Qualitätsziel chemische Parameter

- CSB < 75 mg/L
- BSB₅ < 15 mg/L
- NH₄-N < 10 mg/L
- N_{anorg} < 25 mg/L
- TP < 2 mg/L

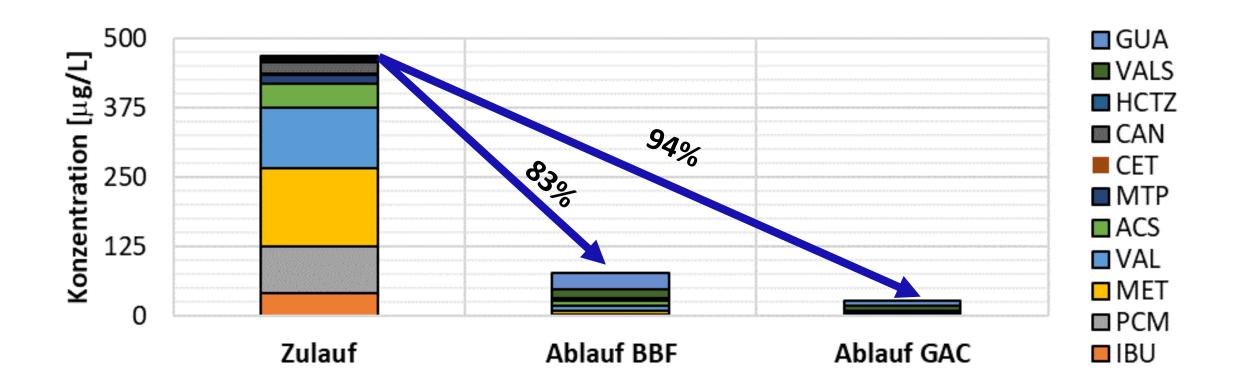
DWA (2019): DWA Arbeitsblatt A-221: Grundsätze für die Verwendung von Kleinkläranlagen.

 \odot

 \odot

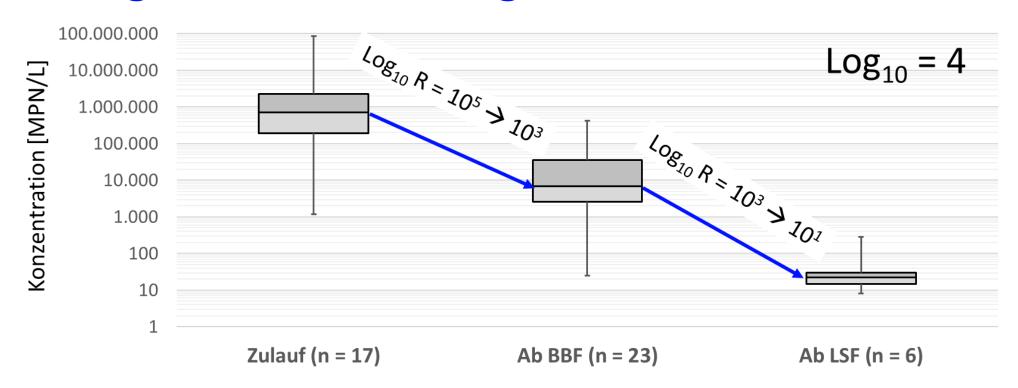
 \odot

Bewertung: Spurenstoffentfernung


Spurenstoffe	Gruppe	Abkürzung	Abbaubarkeit	KARL
Metformin	Antidiabetikum	MET	> 70	
Valsartan	Antihypertensivum	VAL	> 70	
Paracetamol	Schmerzmittel	PCM	> 70	
Ibuprofen	Schmerzmittel	IBU	> 70	
Acesulfam	Süßungsmittel	ACS	<70 >30	
Metoprolol	Betablocker	MTP	<70 >30	X
Cetirizin	Antihistaminika	CET	<70 >30	
Pezefibret	Lipideenker	D7F	(70 × 20	
Carhamazonin	Antionilontikum	CD7	∠70 \ 20	V
Candesartan	Blutdrucksenker	CAN	< 30	X
Hydrochlorothiazid	Blutdrucksenker	HCTZ	< 30	X
Valsartansäure	Antihypertensivum	VALS	< 30	
Dielofenae	Schmerzmittel	DCF	₹30)
Interestation	Dividential	IDC	130	X
Guanylharnstoff	Haupttransformations-produkt von Metformin	GUA	< 30	

Auswahl der Spurenstoffe auf Basis:

- → Vorkommen und biologische Abbaubarkeit in kommunalen Kläranlagen
- → Ergänzung durch Transformationsprodukte Guanylharnstoff (Metformin) und Valsartansäure (Valsartan)


Quelle: https://koms-bw.de/wp-content/uploads/jet-form-builder/3fc6ae40bfc04ae4123761055e6[...]bericht-KomS_Vergleichsmessungen-zur-Spurenstoffelimination.pdf

Bewertung: Spurenstoffentfernung

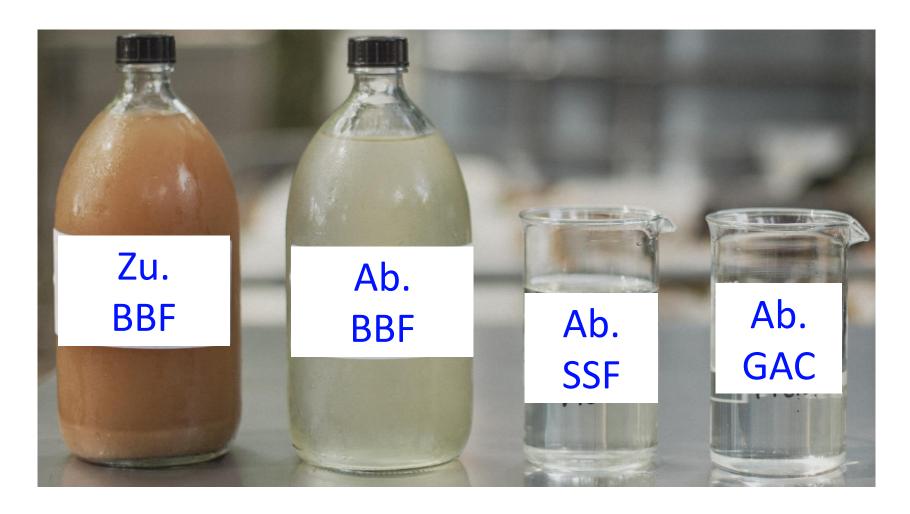
Guanylharnstoff (GUA), Valsartansäure (VALS), Hydrochlorothiazid (HCTZ), Candesartan (CAN), Cetirizin (CET), Metoprolol (MTP), Acesulfam (ACS), Valsartan (VAL), Metformin (MET), Paracetamol (PCM), Ibuprofen (IBU)

Bewertung: E. coli Entfernung

Internes Qualitätsziele Mikrobiologie

- (B) *E. coli* < 100 MPN /100 mL
- (C) *E. coli* < 1000 MPN /100 mL
- (D) *E. coli* < 10000 MPN /100 mL

Erreicht!


Quelle:

Fazit

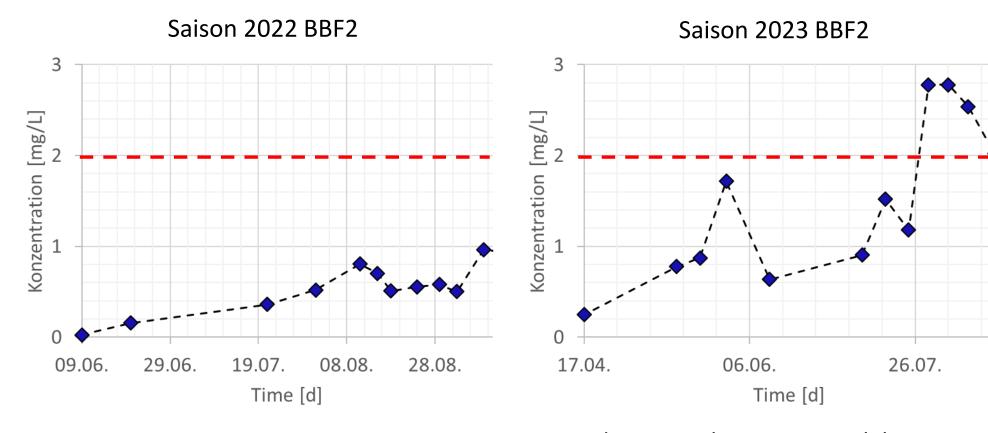
- Sehr hohe Effizienz bezüglich CSB, TSS, BSB₅, TP > 90 %
- Steigerung der Denitrifikationsleistung (> 80 %)
- N_{anorg} Konzentration < 25 mg/L trotz hoher TN-Zulaufkonzentrationen (TN = 199 mg/L)
- Hohe Effizienz bezüglich der Spurenstoffelimination
 - BBF ≥ 83 %
 - GAC ≥ 96 %
- Hoher Rückhalt an E. coli
 - BBF \rightarrow Log₁₀ = 2 \rightarrow (D) *E. coli* < 10000 MPN/100 mL
 - LSF \rightarrow Log₁₀ = 2 \rightarrow (B) *E. coli* < 100 MPN/100 mL

Vielen Dank für Ihre Aufmerksamkeit!

Vielen Dank an alle Projektbeteiligten

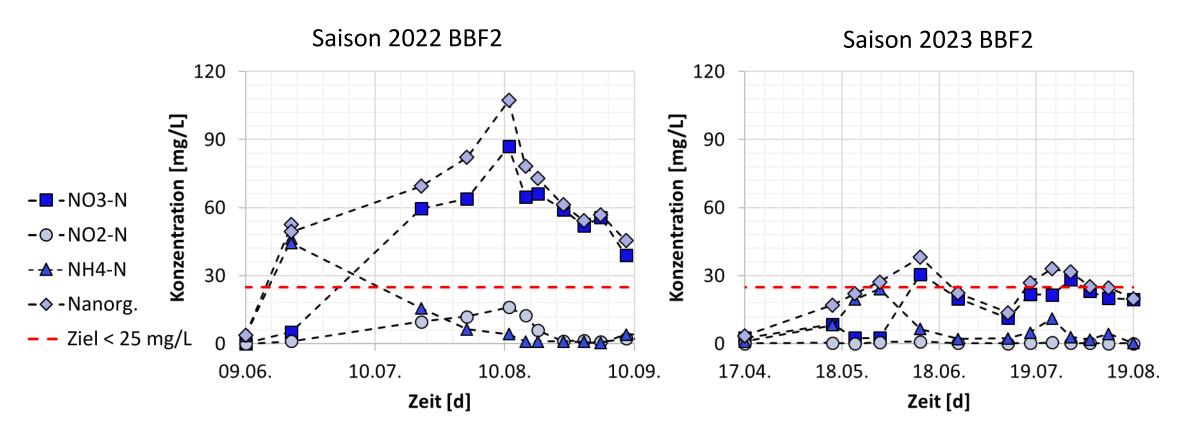
Heribert Rustige, Klaas Kenda, Carl Trebesius, Jeannette Jährig, Jonas Hunsicker, Ulf Miehe, Linus Neubert, Lea Wantzen, Celine Cera, Sophie Wulf, Yanrong Liu, Laura Jirjan, Qiuyue Liu, Deira Linke, Sarah Gross, Angèle Bienassis

Förderkennzeichen: 02WQ1596B



www.kompetenz-wasser.de

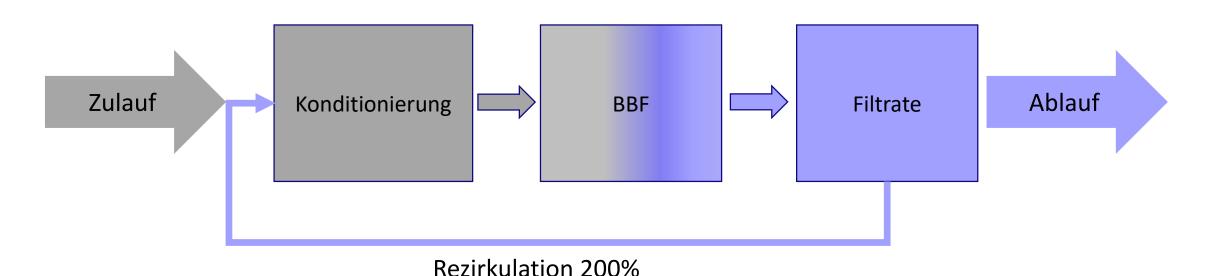
@Kompetenzzentrum Wasser Berlin


Ergebnisse: TP- Entfernung

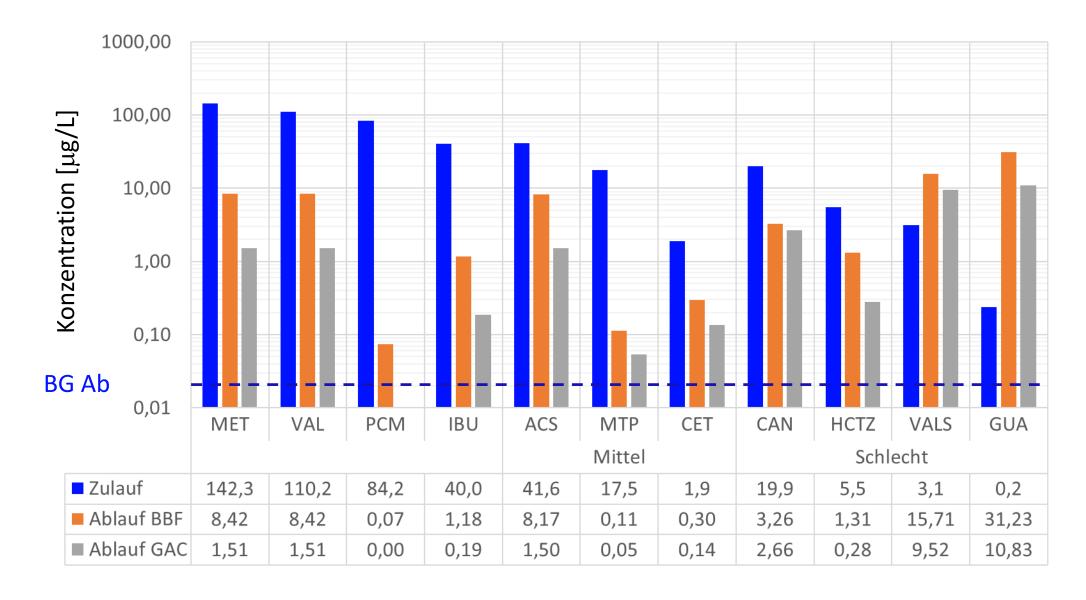
- Sehr guter P-Rückhalt
- Eisenhaltiger Blähton

- Adsorptionskapazität im Blähton erreicht
- Aktive Eisen (III) Chlorid Dosierung

Ergebnisse: Optimierung der Stickstoffentfernung



- Zu hohe Belüftungszeit pro Tag (>12 h/d)
- Ungünstiges C:N-Verhältnis in der Denitrifikationsphase


- Optimiertes Belüftungsregime
- Erweiterung durch vorgeschalteten Konditionierungstank

Ergebnisse: Optimierung der Stickstoffentfernung

- Vorgeschaltete Konditionierung
 - → Verbesserung der Kohlenstoffverfügbarkeit durch zusätzliche Hydrolyse
 - → Zusätzliches Denitrifikationsvolumen
 - \rightarrow HRT = 10,4 h bei $Q_{max} = 1,1 \text{ m}^3/d \text{ und } R = 2,2 \text{ m}^3/d$

Bewertung: Spurenstoffentfernung

