This paper describes an innovative concept for treatment of municipal wastewater, targeting the improved exploitation of the energy content present in the organic matter of raw sewage. The concept is based on a maximum extraction of organic matter into the sludge via coagulation and micro-sieving (100 µm mesh size) to increase the energy recovery in anaerobic sludge digestion and decrease aeration demand for carbon mineralisation. Pilot trials with real wastewater yield a COD extraction of 70-80% of total COD into the sludge while dosing 15-20 mg/L Al and 5-7 mg/L polymer with stable operation of the microsieve and effluent limits below 2-3 mg/L total phosphorus. Anaerobic digestion of the sludge results in high biogas yields of 600 NL/kg organic dry matter input (oDMin) compared to 430 NL/kg oDMin for mixed sludge from a conventional activated sludge process. The overall energy balance of the new concept for a 100 000 pe treatment plant (including biofilter for post-treatment with full nitrification and denitrification with external carbon source) shows that the new concept is an energy-positive treatment process with comparable effluent quality than conventional processes, even when including energy demand for chemicals production. Estimated operating costs for electricity and chemicals are in the same range for conventional activated sludge processes and the new concept
Proof of concept for an innovative energy positive wastewater treatment scheme