Zusammenfassung

Die reinigung von Abwasser ist sehr energieintensiv. die kommunale abwasserbehandlung zählt deshalb noch vor Schulen und krankenhäusern zu den größten Stromverbrauchern. in den rund 10.000 deutschen kläranlagen schlummern allerdings erhebliche einsparpotenziale und sogar bislang ungenutzte energieressourcen, die noch erschlossen werden können.

Zusammenfassung

The present study aims at demonstrating the possibilities of on-line sensors for describing CSO emissions and river impacts. A continuous integrated monitoring, using state-of-the-art on-line sensors, was started in Berlin in 2010. It combines (i) continuous measurements of water quality and flow rates of combined sewer overflows (CSO) at one main CSO outlet and (ii) continuous measurements of water quality parameters at four sites within the urban stretch of the receiving river. UV-VIS probes provide continuous measurements of parameters such as chemical oxygen demand (COD) with relatively low uncertainties (10-30%). However, experience shows that on-line UV-VIS probes are not able to provide accurate measurements of water quality without being calibrated to local conditions. Several methodologies to analyze on-line CSO and river measurements are presented and illustrated with an exemplary event. Results show that reliable information such as the CSO load, the proportion of wastewater in CSO, the contribution of wastewater to CSO load, the first flush effect and the intensity of river impacts can be gained at high precision and temporal resolution. Given the broad range of high quality information from CSO impacts in the river to the characterization of CSO emissions, the study suggests the use of continuous integrated monitoring programs to support decisions on CSO management.

Zusammenfassung

Increasing subsurface activities like geothermal energy production, unconventional gas exploitation (EGR – enhanced gas recovery), enhanced oil recovery (EOR) or geological carbon dioxide storage (GCS) are potentially hazardous for the environment. Especially fresh water aquifers used as drinking water resources need to be protected. The first phase of the project COSMA focuses on potential hazards and hazardous events arising from those activities and aims at developing an approach for quantifying and comparing potential risks. A general description of hazards and hazardous events resulting from emerging subsurface activities is given in the first deliverable D1.1 “Geological CO2 Storage and Other Emerging Subsurface Activities: Catalogue of Potential Impacts on Drinking Water Production”. In this 2nd deliverable, reported hazards and hazardous events resulting from geothermal energy production in Germany are described. This report includes analyses of enquiries to experts from all federal states, State Geological Surveys, information from standardization committees, developers, planners, drilling contractors, expert committees, consulting engineers and regulatory authorities such as environmental agencies, water authorities and mining authorities as well as from media reports. It aims to list and categorize observed impacts arising from recent geothermal projects, as there have been increasing activities in this field in the past 10 years in Germany and because there are many similarities to other subsurface activities with respect to drilling processes, fracking methods and reinjection of fluids. The German classification of geothermal systems distinguishes between shallow or nearsurface (< 400 m depth) and deep geothermal energy (> 400 m depth) systems, which will be used in the following chapters. Table 1 shows the difference to international classification schemes, regarding enthalpies and temperatures. The reported case studies of failures potentially leading to contamination of freshwater aquifers are described in chapter 2 with respect to the setting and the reason for failure (if known). Chapter 3 gives some recommendations with respect to possible precautions and countermeasures to prevent such potentially hazardous events. Regardless of the drilling depth there are general hazards and hazardous events that must be taken into account for all subsurface activities. Amongst these are hazardous events during operation which can lead to a contamination of the site, hazardous events during drilling caused by wrongly selected drilling techniques, drilling into unknown caverns, cavities or caves or faulty casing, construction or plugging (sealing). Furthermore, unexpected chemical reactions between fluids and casing or sealing material (e.g. grout) can cause seepage or leakage and therefore hydraulic short circuits. Table 2 gives a summary of general impacts of drilling, especially when multiple aquifers are intersected, as well as from operation of geothermal facilities. Further details are given in COSMA-1 report D 1.1.

Menz, C. , Schwarzmüller, H. , Seis, W. (2013): RIKO-1 Synthesebericht.

Kompetenzzentrum Wasser Berlin gGmbH

Zusammenfassung

Das vorliegende Dokument ist als zusammenfassender Synthesebericht des Forschungsprojektes RIKO-1 konzipiert und ergänzt die fünf Teilberichte zu den Arbeitspaketen aus RIKO-1 mit einer versuchsübergreifenden Betrachtung, Diskussion der Ergebnisse und Schlussfolgerungen zur Risikominimierung. Ausgehend von den in den Teilberichten dokumentierten Recherchen und Versuchen werden dazu in Kapitel 2 zunächst der Kenntnisstand zu Beginn des Projektes zusammengefasst und ein Überblick über die Untersuchungen gegeben. Kapitel 3 unterzieht die Brunnen einer Gefährdungsanalyse und beschreibt mögliche Eintragspfade und Einflussfaktoren mit einer Bewertung der Eintrittswahrscheinlichkeiten. Die vorliegenden Daten werden in Kapitel 4 dann in eine Risikoanalyse überführt und auf Basis der Priorisierung der Gefährdungsereignisse Maßnahmen zur Minimierung von Befunden empfohlen. Indikatorkeime, ihre Überwachung sowie der Stand von Forschung und Entwicklung neuer (molekularbiologischer) Methoden zur Analyse und Früherkennung bzw. Möglichkeiten der Online-Überwachung werden im Teilbericht "Mikrobiologische Methoden: Stand der Technik" von O. Thronicker behandelt. Die deskriptive Datenanalyse vorliegender Befunddaten hinsichtlich möglicher Zusammenhänge mit bestimmten Brunneneigenschaften, insbesondere Lage, Baumerkmalen und Betriebsparametern wurde im Teilbericht "Deskriptive Datenanalyse" zusammengefasst. Die Feldversuche im Rahmen der Einzelbrunnenuntersuchung SPAsued10, die Markierungsversuche an zwei Brunnen im Wasserwerk Jungfernheide sowie die Sediment- und Wasserbeprobungen an einer Transekte entlang des Fließpfades des Uferfiltrats von der Havel zur Galerie Tiefwerder-Schildhorn sind in den entsprechenden Teilberichten dokumentiert. Die Teilberichte beschreiben jeweils die Ausgangslage zu Versuchsbeginn, die Methodik und Ergebnisse und enthalten eine ausführliche Diskussion und Schlussfolgerungen aus den Versuchen. Der hier vorliegende Synthesebericht greift die einzelnen Versuche und Ergebnisse in der Beschreibung des Kenntnisstandes nach dem Konzept eines Water Safety Plans (WSP, WHO 2009) auf. WSPs auf Wasserwerksebene wurden bislang von den BWB für sechs der neun aktiven Wasserwerke im Entwurf erstellt. Sie fokussieren auf die Aufbereitungsschritte vom Rohwasser zum Reinwasser. In RIKO-1 sollte ergänzend vor allem der Einzelbrunnen betrachtet werden. Die Risikobewertung bezieht sich daher auf die Wassergewinnung, d.h. den Weg des Wassers vom zur Uferfiltration genutzten Oberflächengewässer bis zum Eintritt des Rohwassers in die Sammelleitung. Die davor (Ressourcenschutz) und danach (Rohwasseraufbereitung) liegenden Teile des teilgeschlossenen Wasserkreislaufs werden nicht behandelt. Die ganzheitliche Betrachtung und Entwicklung eines WSPs für den gesamten Berliner Wasserkreislaufs ist Ziel im Projekt ASKURIS. Als weitere Grundlagen der Arbeiten in RIKO-1 und der zusammenfassenden Betrachtung im vorliegenden Bericht dienten u.a. das Wasserversorgungskonzept 2040 (Möller & Burgschweiger 2008), eine Fallstudie der Befunde 2003-2007 in WELLMA-1 (Gräber 2009, unveröffentlicht) sowie Forschungsarbeiten aus NASRI und IC-NASRI (Lopez-Pila & Szewzyk 2006; u.a.). Alle geplanten Untersuchungen und Zwischenergebnisse wurden regelmäßig im Projektteam diskutiert (vgl. Besprechungsprotokolle) und daraus folgend ggf. Maßnahmen zur direkten Umsetzung abgeleitet oder Versuchskonzepte angepasst. Ein Verzeichnis der in Ergänzung zum Synthesebericht vorliegenden Berichte und Protokolle, auf die im Weiteren verwiesen wird, findet sich in Anhang 1.

Sáinz-García, A. M. (2013): Energy optimisation of drinking water well field operation.

Master Thesis. Euro Hydro-Informatics and Water-Mangement. Brandenburgische Technische Universität Cottbus - Senftenberg

Zusammenfassung

Last decades the concern about energy consumption has globally arisen due to awareness on climate change and the increase of energy prices. In the water field the nexus between water and energy has been extensively studied, however, there has been little discussion about energy-efficient specific approaches. This master thesis is part of the OPTIWELLS project which addresses to determine more energy efficient techniques for water supply operation, in particular for water abstraction well fields. One option to optimize a well field preserving its structure or components is the “smart well field management”, which maximize the time during which the pumps are performing on their best efficiency point, guaranteeing the water demand. The smart well field management is complex and accounts for various integrated processes. The aim of the project is to develop a prototype of a software tool able to cope with this complex optimisation problem. In particular, this master thesis deals with the modelling of a case study, applying methodologies that will be implemented in the OPTIWELLS prototype tool. Results and methods of data analysis for a well field, including a site audit, are described. The well field modelling was carried out with EPANET software by means of its Programmer’s Toolkit. No reliable data to validate the energy consumption estimation of the model were available. However, the report shows that observed hydraulic conditions of an abstraction well field can be accurately reproduced. The impact of different modelling approaches and amount of data available on energy evaluation is also drawn. Some insight into the well field current conditions (current pump curve, drawdown, water quality, specific energy demand,..) are discussed and recommendations or the operation of the case study site will be given.

Eslami, S. M. R. (2013): Developing an Advanced Pump Database For Drinking Water Well Fields.

Master Thesis. Euro Hydro-Informatics and Water-Mangement. Brandenburgische Technische Universität Cottbus - Senftenberg

Zusammenfassung

Today, groundwater is one of the most important fresh water resources in big cities of the world. On one hand, the population growth and urban development and on the other hand, climate change and decreasing precipitation will increase the vital role of underground water resources to supply water for the cities, therefore an increase in the energy consumption in well fields has to be expected. It is becoming more difficult to ignore the cost of pumping energy for water stakeholders in Germany and Europe. In recent years, there has been an increasing interest in optimisation of energy consumption in different fields. The goal of this study is first to design a relational database to store the information of submersible pumps and second to develop a database management system for this pump database. The pump database is intended to be used in prototype model software aiming at the minimisation of a well field's pump energy demand. To this end, two approaches of assessing the necessary data for submersible pumps, and building a relational database are going to be discussed in this study. Finally, two applications with graphical user interfaces which have been developed by using the programming language “R” are presented for loading the data into the database, visualizing the database tables and plotting the pump curves.

Zusammenfassung

Wastewater reuse is increasingly considered as possible alternative water source for diverse non-potable uses. Among the major questions, defining which water quality for which reuse is required is crucial. If the demand for reclaimed water is seasonal, the question of reclaimed water storage is also essential. Aquifer recharge for further nonpotable reuse can be a solution to address many final reuse applications, including indirect agricultural or landscape irrigation, saltwater intrusion barriers, subsidence mitigation/aquifer replenishment or other non-potable reuses. Most of the aquifer recharge applications of wastewater reuse so far rely on high-pressure membrane systems or even double-membrane combined with advanced oxidation processes. However, when non-potable reuse is targeted, or the replenishment of a threatened aquifer is planned, recharge with high-quality non-potable water could be envisaged as acknowledged by the legislation of several countries. In this report, the performance of hybrid disinfection/filtration and recharge schemes is assessed in comparison to a high-pressure membrane system working under similar conditions. Among the portfolio of available disinfection and filtration technologies, five treatment trains were chosen – combinations of ozone or UV treatment with sand filters or UF membrane and final infiltration or injection – and compared to a double-membrane system (UF+NF). A synthetic secondary effluent (SE) was considered for this conceptual study on the basis of a worldwide survey of typical SE water qualities. The major legislations from the WHO, the USEPA and Australian guidelines were considered to define the water quality to be reached by these hybrid treatment schemes. The low targeted value in suspended solids (10 mg/L) and microbiological contaminants (1 fecal coliform / 100 mL) requires extensive disinfection and filtration processes. The proposed schemes were selected on the base of a large review of typical pollutant removal efficiencies found in the literature. To perform a comparative Life-Cycle Assessment of the different treatment trains, similar assumptions were made in all cases for a hypothetical case study of a 50,000-PE reuse plant downstream of a secondary sewage treatment plant. All five proposed hybrid treatment trains are capable of supplying very high non-potable water quality, and the combination of disinfection, filtration and aquifer passage proved to be an efficient combination for removing suspended solids, residual BOD and microbiological contaminants. The environmental performance of the treatment trains was compared in terms of carbon footprint, but also energy demand, human toxicity, acidification impact and land footprint. Both the energy demand and carbon footprint of hybrid schemes was found to be considerably lower than for a double-membrane system, besides offering an additional storage solution in the aquifer. Thus, there is a significant margin for lowering the environmental impact, energy demand and operational costs if non-potable water quality is sufficient for the reuse goal. However, the legal context and social acceptability may represent barriers for this intended recharge of nonpotable water to the aquifer. This conceptual study has shown the potential of hybrid solutions to provide high-quality non potable water for aquifer recharge and further reuse. A large portfolio of solutions was proposed to reach the intended non-potable uses. To assist the selection of adequate treatment trains, the strengths and weaknesses of the solutions can be summarized in a decision tree taking into account the reuse goal, aquifer type and space availability, and selecting the least energy-intensive solution for a given legal and sociocultural context.

Zusammenfassung

Different technologies for tertiary wastewater treatment are compared in their environmental impacts with Life Cycle Assessment (LCA). Targeting low phosphorus concentration (50-120 µg/L) and disinfection of WWTP secondary effluent, this LCA compares high-rate sedimentation, microsieve, dual media filtration (all with UV disinfection), and polymer ultrafiltration or ceramic microfiltration membranes for upgrading the large-scale wastewater treatment plant Berlin-Ruhleben. Results show that mean effluent quality of membranes is highest, but at the cost of high electricity and chemicals demand and associated emissions of greenhouse gases (GHG) or other air pollutants. In contrast, gravity-driven treatment processes require less electricity and chemicals, but can reach significant removal of phosphorus. In fact, the latter options will only lead to a minor increase of GHG emissions and energy demand compared to the existing pumping station or UV treatment.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.