Zusammenfassung

The microbial degradation of pharmaceuticals found in surface water used for artificial recharge is strongly dependent on redox conditions of the subsurface. Furthermore the durability of production wells may decrease considerably with the presence of oxygen and ferrous iron due to the precipitation of trivalent iron oxides and subsequent clogging. Field measurements are presented for oxygen at a bank filtration site in Berlin, Germany, along with simplified calculations of different oxygen pathways into the groundwater. For a twodimensional vertical cross-section, oxygen input has been calculated for six scenarios related to different water management strategies. Calculations were carried out in order to assess the amount of oxygen input due to (1) the infiltration of oxic lake water, (2) air entrapment as a result of water table oscillations, (3) diffusive oxygen flux from soil air and (4) infiltrating rainwater. The results show that air entrapment and infiltrating lake water during winter constitute by far the most important mechanism of oxygen input. Oxygen input by percolating rainwater and by diffusive delivery of oxygen in the gas phase is negligible. The results exemplify the importance of well management as a determining factor for water oscillations and redox conditions during artificial recharge.

Zusammenfassung

The use of bank filtration for drinking water treatment in Europe dates back to the days of beginning industrialization in the 19th century. With regard to improved source water quality in Europe, the millennium development goals and global climate change, aquifer recharge (AR) and bank filtration (BF) need to be reassessed in terms of sustainability and their role within an integrated water resource management. Based on the IC-NASRI study comprising 194 drinking water facilities worldwide integrating aquifer recharge techniques in their treatment system, an average AR/BF site would be located in Central Europe alongside a river and is characterized by: a sandy gravel aquifer with a hydraulic conductivity of 2x10-3 m/s, a maximum aquifer thickness of 30 m, 175 m travel distance from bank to well, a travel time of 70 days and by vertical well operation with a daily capacity of 55.000 m³. A literature survey conducted within the TECHNEAU project demonstrated that for substances highly relevant to newly-industrialized or developing countries (e.g. pathogens) the removal efficiency is good. Hydro-chemical analyses from three study sites in Delhi support these results. However, it was also shown that poor surface water quality, saline groundwater or subsurface conditions leading to mobilization of trace metals like iron, manganese or arsenic may limit the applicability of AR / BF without further post-treatment. Climate change might affect the performance of AR / BF worldwide, impairing source water quality and influencing removal efficiency. However, other factors like changes in demography or land-use can impact the systems by far more severely.

Grützmacher, G. , Wittstock, E. , Gnirß, R. , Dünnbier, U. (2009): Drinking Water Supply in Berlin - a Module within the Urban Water Cycle.

p 12 In: WssTP workshop on Managed Aquifer Recharge. Graz, Austria. 29.-30.06.2009

Grützmacher, G. , Dechesne, M. , Pitois, F. , Pagotto, C. , Fastner, J. (2009): Occurrence of cylindrospermopsin, anatoxin-a and saxitoxins in France and implications for drinking water prodution.

p 1 In: 14th international conference on toxicity assessment. Metz, France. 30.08.-04.09.2009

Zusammenfassung

In summer 2007 & 2008, 100 water samples were collected from 10 freshwater reservoirs with cyanobacteria issues. Phytoplankton was determined according to the Utermohl method [1]. Intra- and extracellular CYN, ATX-a, STX were analyzed by LC-MS-MS or HPLC-PDA at UBA, and in addition, Veolia tested Abraxis ELISA kits for total CYN and total STX on the 2008 water samples (n=45). Cyanobacterial abundance was comparably low in 2007 & 2008 for all reservoirs, probably because of cooler summer months, with less sunlight, more rain and quickly decreasing fall temperatures (except in reservoir 10, which had low incoming nutrient charges). For instance, average chlorophyll content was 12 µg/L in 2007 and 35 µg/L in 2008 in Western France, when 60-80 µg/L concentrations are usually measured. In spite of these environmental conditions, cyanobacteria were detected in 97% of the samples and cyanotoxins in 55%. WHO level 3 for drinking water (>100 000 cell/mL) was reached for 20-25% of the samples. Among the species observed in the water samples, the following potential CYN, ATX-a, STX producers were observed: Cyanotoxin LC-MS-MS and HPLC-PDA results are given on the right. ELISA results for CYN and STX of the 2008 samples only partially agree with the LC-MS-MS data. This might be due to the differences in extraction procedures of the two methods, cross-reactivity issues of the ELISAs for derivatives, in combination with overall very low concentrations of the toxins.

Sonnenberg, H. (2009): Technical Conference Report.

p 8 In: International Conference on Urban Drainage Modelling (8UDM) and International Conference on Rainwater Harvesting and Management (2RWHM). 7.-12. September 2009

Zusammenfassung

Three different methods for fi ltration characterization in Membrane Bioreactor (MBR) systems were compared. These were the Delft Filtration Characterization Method (DFCm), the Berlin Filtration Method (BFM) and an ex situ side-stream fi ltration test cell for the determination of the critical fl ux. The ex situ fi ltration test cell and the DFCm fi lter activated sludge from a tank, while the BFM works in situ with a test cell directly submerged into the biological tank at similar operational conditions to a typical MBR plant. The mixed liquor of four different MBR units was characterised several times with the three fi ltration methods. The three tested methods seemed to agree in the classifi cation of the tested mixed liquors in terms of fi lterability except for one of the tested activated sludges. Additionally, three critical fl ux protocols were studied using the BFM fi ltration test cell. The fi rst consisted in the classical fl ux-step method, the second included relaxation between fi ltration steps and in the third protocol, 2 min fi ltration at a fi xed fl ux were performed before every fi ltration step. The last protocol was selected as the most representative of full scale MBR operation and the most interesting one for giving valuable information about the irreversibility of the fouling.

Zusammenfassung

Due to their compact design and their high quality and reliable treatment, package or containerised membrane bioreactor (MBR) units are used for decentralised and semi-decentralised wastewater treatment plants. The operational availability, performance and economical viability of these MBR systems depend on the fi ltration performance of the membrane modules. Current chemical cleaning strategies of MBR modules, based on regular (weekly) maintenance cleanings and/or occasional (quarterly to biannual) intensive cleanings proved not to be adapted to semi-central MBR applications (100 up to 1000 p.e.): regular maintenance cleanings require automation and lead to too much care and personnel requirement. Occasional intensive cleanings increase the operational risk of membrane fouling and low cleaning recovery. In addition, semi-central MBR applications are often designed with at least two redundant fi ltration lines. An alternative chemical cleaning strategy was therefore proposed, implemented and assessed in a containerised MBR unit serving a population of about 250 p.e.: at a given time, only one fi ltration line is in operation while the other one soaks in a low-grade chemical solution. The modules are switched alternately on a monthly basis. To identify a cleaning strategy and an agent showing a good recovery, one of the modules was cleaned with H2O2, while the other was cleaned with NaOCl. A cleaning step with citric acid is added when necessary. These cleanings were tested over 16 months with the goal to minimise maintenance effort and chemicals used.

Zusammenfassung

Aim of this study is to evaluate the impacts of combined sewer overflows (CSO) on the Berlin Spree focussing on the intermittent effects of oxygen depletion on the aquatic biocenosis. The investigation bases on a long series of measurements carried out by Berliner Wasserbetriebe and the Berlin Senate for Health, Environment and Consumer Protection.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.