Zusammenfassung

The goal of this study is to demonstrate the application of Life Cycle Assessment as a tool for systems analysis in wastewater treatment. Therefore, the process for sludge treatment and disposal at the WWTP Berlin-Waßmannsdorf has been analysed with the methodology of Life Cycle Assessment (LCA) to determine the total cumulative energy demand and the carbon footprint of the system as exemplary indicators. In addition to the characterization of the status quo in 2009, several measures for an energetic optimization of the system have been evaluated in their effects on the energy balance and greenhouse gas emissions. The process model of the system encompasses all relevant processes of sludge treatment and disposal, including the supply of electricity and chemicals, transport and incineration of the sludge, and treatment of sludge liquor which is recycled back to the WWTP inlet. Products recovered during sludge treatment (biogas from anaerobic digestion and MAP fertilizer) and disposal in incineration (electricity or substitution of fossil fuels) are accounted by credits for the respective substituted products. Overall, sludge treatment and disposal in Berlin-Waßmannsdorf is an energy-positive process, recovering a net amount of primary energy of 162 MJ (45 kWh) per population equivalent and year (PECODa). This is mainly due to the biogas generated in anaerobic digestion and the substitution of fossil fuels in co-incineration. Similarly, the carbon footprint of the process reveals an amount of 11.6 kg CO2-eq/(PECODa) as avoided emissions, thus indicating the environmental benefits of energy recovery from sewage sludge. However, process emissions of the powerful greenhouse gases CH4 and N2O are estimated based on generic emission factors from literature, and can have a distinct influence on the overall carbon footprint. This underlines the necessity to support the results of this LCA with primary data from monitoring of emissions on-site. The evaluation of optimization measures shows the benefits of a system-wide analysis: an enhanced recovery of energy is partially offset by increased energy demand, and the carbon footprint does not always correlate with the energy balance. The different routes for sludge disposal differ heavily in their environmental profile and show potentials for optimisation, especially in mono-incineration of sewage sludge. Some measures are beneficial for both energy and carbon footprint (addition of co-substrates into the digestor, utilization of excess heat with an Organic Rankine Cycle process), while others can decrease energy demand but may potentially increase the carbon footprint (treatment of sludge liquor by deammonification, thermal hydrolysis of excess sludge). Overall, the method of Life Cycle Assessment proved to be well suited for a systematic analysis of the environmental footprint of the activities of Berliner Wasserbetriebe. In the future, the existing process model can be extended to include the entire wastewater treatment plant for a comprehensive evaluation of its environmental profile, e.g. for providing information on the environmental consequences of prospective concepts for site development.

Zusammenfassung

The present study analyses the environmental footprint of the Braunschweig wastewater scheme using the methodology of Life Cycle Assessment. All relevant processes of wastewater treatment and disposal are modelled in a substance flow model based on available full-scale data (year 2010) complemented by literature data to calculate aggregated emissions and resource demand of the system. Products of the system (i.e. electricity from biogas combustion, nutrients, and irrigation water) are accounted with credits for the respective substituted products. Beside the status quo of the Braunschweig system in 2010, a set of optimisation scenarios are assessed in their effects on the environmental footprint which target an enhanced recovery of energy and nutrients. The scenarios include the addition of different co-substrates, thermal hydrolysis of sludge in various configurations, nutrient recovery for nitrogen and phosphorus, and utilization of excess heat via an Organic Rankine Cycle (ORC). The energetic balance of the system is comparatively good, as 79% of the cumulative energy demand can be offset by secondary products, mainly biogas (58%) and fertilizer substitution (14%). The optimisation of nutrient and especially water management offers considerable potential for improving the energy balance, the latter due to the high demand of electricity for pumping the water to the fields. The net carbon footprint of the system amounts to 10 kg CO2-eq/(PECODa) and is mainly caused by energy-related processes, augmented by direct emissions of N2O and CH4 in the activated sludge process. Nutrient emissions in surface waters are relatively low (29 g P and 80 g N/(PECODa)) due to the transfer of nutrients to agriculture and the polishing effect of the infiltration fields. While effects on human toxicity are small after normalisation to German conditions, Cu and Zn emissions to aquatic and terrestrial ecosystems lead to a substantial impact in ecotoxicity (organic substances not accounted). Normalisation of the environmental footprint reveals the primary function of the wastewater treatment plant, i.e. the protection of surface waters from inorganic and organic pollutants and excessive nutrient input. Whereas the quantitative contribution of the system is high for eutrophication and ecotoxicity, energy consumption and correlated indicators such as carbon footprint, acidification and human toxicity have only a minor share to the total environmental impacts per inhabitants in Germany. Consequently, the optimisation of the latter environmental impacts should only be pursued if the primary function of the sewage treatment and related impacts on surface waters are not compromised by these measures. In scenario analysis, both the addition of co-substrates and the thermal hydrolysis of sludge for improving the anaerobic degradation into biogas have a substantial positive effect on the energy balance and carbon footprint without impairing other environmental impacts. Based on the results of the pilot trials in CoDiGreen, the current energy demand can be reduced up to 80% by a combination of adding ensiled grass into the digestor and hydrolysis of excess sludge (potentials have to be verified in full-scale trials). A twostep digestion process with intermediate dewatering and hydrolysis (DLD configuration with EXELYS™) seems promising in terms of energy benefits and carbon footprint. The recovery of nitrogen or phosphorus from the sludge liquor of dewatering does not result in major benefits in the environmental profile, whereas the implementation of an ORC process for energy recovery from excess heat can be fully recommended from an environmental point of view.

Zusammenfassung

Der Einsatz von Filtern zur Reduzierung von Stickstoff- und Phosphoreinträgen aus der Landwirtschaft in die Oberflächengewässer wurde in Deutschland bisher kaum untersucht. In einem Workshop wurde der Stand der Untersuchungen von Projekten in Polen, Dänemark, Deutschland und Frankreich vorgestellt. Um das Potential dieser Maßnahmen auszuschöpfen, sind die Entwicklung von Entscheidungsunterstützungssystemen für geeignete Einsatzorte und weitere Demonstrationsprojekte unter Feldbedingungen notwendig.

Zusammenfassung

As a part of well field optimization the pump, as a key component in water extraction systems and its energy saving potentials have to be checked. In addition to the project deliverable D2.1 “Literature review on theoretical pump and motor efficiency of submersible pump systems” the availability of innovative and energy saving submersible pumps on the market has to be verified. Therefore, the market has been scanned and evaluated. The purpose of this document is to present the results of the market analysis for efficient pumps and to assess realistic energy saving potentials that are achievable with today’s technology. This achievement can be reached by either selecting more efficient centrifugal pumps or motors (evaluated in this study), or by considering some boundary conditions such as losses in power supply cables, operating mode or the use of variable speed drives. These accompanying conditions were also discussed at the workshop and are presented as a short summary in the last chapter of this paper.

Staub, M. , Moreau-Le Golvan, Y. , Grützmacher, G. (2012): A catalogue and matrix of initiatives as a toolbox for utilities to enhance their preparedness for climate change.

p 4 In: IWA World Congress on Water, Climate and Energy. Dublin, Ireland. 13-18 June 2012

Zusammenfassung

Water is one of the sectors where climate change will be most pronounced, but at the same time it is one of the sectors where numerous adaptation possibilities exist. While the extents of the impacts are not known yet, it is the right period to prepare the utilities to adapt to the global changes in an urbanizing world. Adaptation to climate change, though not always perceived as such, is already reality in the urban water sector. In this context, within the framework of the international research project PREPARED funded by the European Commission and, among others, Veolia Water and local utilities, a toolbox consisting in a catalogue and a dynamic matrix of initiatives in the water sector is being compiled by the Berlin Centre of Competence for Water, KWB.

Zusammenfassung

Previously, the analysis of energy demand for wastewater treatment was often limited to one-dimensional analyses of electricity demand. How ever, a comprehensive analysis requires the inclusion of all different contributions to energy demand. The Life Cycle Assessment (LCA) methodology defined in ISO 14040/44 is a suitable tool for this task. With it, all different primary and secondary energy demands can be quantified and assessed using consistent indicators, complemented by an assessment of other environmental impacts such as the carbon footprint.

Zusammenfassung

The Water supply and sanitation Technology Platform (WssTP) was initiated by the European Commission in 2004. It is led by industries in collaboration with academics, research organisations and water users to help structure the European Research Area and identify R&D needs for the water sector. In December 2008, the board of the WssTP identified the need to create a Task Force on Climate Change in order to build a working group focused on the issue and able to assist the EU Commission in the related Calls for Projects. The Task Force on Climate Change did a review on the research and technology development (RTD) needs related to each of the WssTP topics, highlighting the challenges they will face in a climate change context. This paper is based on the review carried out and presents its main conclusions. The RTD topics identified involve a broad range of expertise areas and can be divided into two main groups: mitigation and adaptation. The latter will be brought to the fore in this paper.

Zusammenfassung

Continuous and quasi-continuous odour monitoring solutions have the potential to provide essential tools to support the whole odour control procedure in sewer networks. Hence, there is a need for continuous measurement and supervision of odour emissions with technical measurement systems. Objective of this investigation is the identification of instruments on the market which have the potential to be applied for odour monitoring from wastewater collection systems or wastewater treatment works. Generally one can distinguish between following methods of odour measurement: (i) Sensory methods: Measurement of odour concentration by olfactometry (evaluation by human noses), (ii) Analytical methods: (ii a) Selected sensors: Measurement of specific single odorants or surrogate parameters (e.g. H2S-measurement) (ii b). Gas chromatography, mass spectrometry, optical sensors: Measurement or quantification of a spectrum of several gas components, (ii c) Multigas-sensor arrays: Measurement of overall odour parameters by means of unspecific, broadband multigas-sensor arrays. Only the mentioned analytical methods provide the possibility of continuous measurements. They however do not all consider the sensory component of odour (perceived effect). Within this report methods (ii b) and (ii c) will be covered. The report provides an introduction to the principle of measurement, briefly discussing examples of sampling methods and data analysis methods and gives lists of collected odour monitoring systems, tabulary providing specifications from literature, manufactures and vendors.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.