Zusammenfassung

UV/Vis spectrophotometers have been used for one decade to monitor water quality in various locations: sewers, rivers, wastewater treatment plants (WWTPs), tap water networks, etc. Resulting equivalent concentrations of interest can be estimated by three ways: i) by manufacturer global calibration; ii) by local calibration based on the provided global calibration and grab sampling; iii) by advanced calibration looking for relations between UV/Vis spectra and corresponding concentrations from grab sampling. However, no study has compared the applied methods so far. This collaborative work presents a comparison between five different methods. A Linear Regression (LR), Support Vector Machine (SVM), EVOlutionary algorithm method (EVO) and Partial Least Squares (PLS) have been applied on various data sets (sewers, rivers, WWTPs under dry, wet and all weather conditions) and for three water quality parameters: TSS, COD total and dissolved. Two criteria (r2 and Root Mean Square Error RMSE) have been calculated - on calibration and verification data subsets - to evaluate accuracy and robustness of the applied methods. Values of criteria have then been statistically analysed for all and separated data sets. Non-consistent outcomes come through this study. According to the Kruskal-Wallis test and RMSEs, PLS and SVM seem to be the best methods. According to uncertainties in laboratory analysis and ranking of methods, LR and EVO appear more robust and sustainable for concentration estimations. Conclusions are mostly independent of water matrices, weather conditions or concentrations investigated.

Zusammenfassung

This paper reports about experiences gathered from five on-line monitoring campaigns in the sewer systems of Berlin (Germany), Graz (Austria), Lyon (France) and Bogota (Colombia) using UV-VIS spectrometers and turbidimeters. The influence of local calibration on the quality of on-line COD measurements of wet weather discharges has been assessed. Results underline the need to establish local calibration functions for both UV-VIS spectrometers and turbidimeters. It is suggested to practitioners to calibrate locally their probes using at least 15-20 samples. However, these samples should be collected over several events and cover most of the natural variability of the measured concentration. For this reason, the use of automatic peristaltic samplers in parallel to on-line monitoring is recommended with short representative sampling campaigns during wet weather discharges. Using reliable calibration functions, COD loads of CSO and storm events can be estimated with a relative uncertainty of approximately 20 %. If no local calibration is established, concentrations and loads are estimated with strong errors questioning the reliability and meaning of the on-line measurement. Similar results have been obtained for TSS measurements.

Zusammenfassung

Whilst the importance of integrated modelling of urban wastewater systems is ever increasing, there is still no concise procedure regarding how to carry out such modelling studies. After briefly discussing some earlier approaches, the guideline for integrated modelling developed by the Central European Simulation Research Group (HSG - Hochschulgruppe) is presented. This contribution suggests a six-step standardised procedure to integrated modelling. This commences with an analysis of the system and definition of objectives and criteria, covers selection of modelling approaches, analysis of data availability, calibration and validation and also includes the steps of scenario analysis and reporting. Recent research findings as well as experience gained from several application projects from Central Europe have been integrated in this guideline.

Muschalla, D. , Schütze, M. , Schroeder, K. , Bach, M. , Blumensaat, F. , Klepiszewski, K. , Pabst, M. , Pressl, A. , Schindler, N. , Wiese, J. , Gruber, G. (2008): The HSG Guideline Document for Modelling Integrated Urban Wastewater Systems.

p 10 In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 2008. Edinburgh, Scotland. 31.8. - 5.9.2008

Zusammenfassung

The importance of integrated modelling of urban wastewater systems is ever increasing, also due to the European Water Framework Directive. In order to facilitate its practical application, the Central European Simulation Research Group (HSG) has prepared a guideline document, suggesting a seven-step procedure to integrated modelling. Findings of recent research and application projects in Central Europe have been integrated in the guideline. The present paper outlines this guideline document. The full guideline will be made available on the Internet.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.