Steigende Sulfatkonzentrationen in der Spree geben Anlass zur Sorge, dass zusätzliche Verfahrensschritte zur Sulfatentfernung bei der Trinkwasseraufbereitung in Berlin notwendig werden könnten. Im Rahmen des BMWK-Projekts SULEMAN wurde eine detaillierte Studie der damit verbundenen Kosten und Umweltauswirkungen für das Wasserwerk Friedrichshagen in Berlin durchgeführt. Dabei wurde das Ionenaustauschverfahren CARIX mit der Niederdruck-Umkehrosmose bei verschiedener Sulfatbelastung im Rohwasser verglichen.

Schütz, P. , Gutierrez, O. , Busquets, S. , Gunkel, M. , Caradot, N. (2023): The use of a low-cost monitoring dataset for sewer model calibration.

6th IWA International Conference on eco-Technologies for Wastewater Treatment. 26.6 - 29.6 2023. Girona, Spain


Urban wastewater management and the associated modelling has become indispensable today. Reliable calibration is essential for these models, and water level data is used as a standard. However, data collection can be limited due to high sensor costs and harsh conditions in the sewer. A novel solution is collecting data using low-cost temperature sensors, placing one in the stream, the other at the crest of the weir. In the case of dry weather, the sensor measures the air phase, whereas, in the case of Combined Sewer Overflow (CSO), the discharged storm and wastewater is measured. Autocalibration was performed using OSTRICH for a SWMM model in Berlin, with water level and fictional temperature data, and various number of measuring sites. Results showed that calibration using temperature data was as good as using water level data, with promising outcomes achieved by using one measuring site, offering a cost-effective alternative for water utilities.

Miehe, U. , Stapf, M. , Seis, W. (2023): Water reuse in agriculture: Exploiting synergies with the German national micropollutant strategy.

Water Reuse Europe. Agricultural water reuse in Europe: status, challenges and opportunities for further growth. Webinar 2023


Pathogen removal in managed aquifer recharge (MAR) systems is dependent upon numerous operational, physicochemical water quality, and biological parameters. Due to the site-specific conditions affecting these parameters, guidelines for specifying pathogen removal have historically taken rather precautionary and conservative approaches in order to protect groundwater quality and public health. A literature review of regulated pathogens in MAR applications was conducted and compared to up-and-coming indicators and surrogates for pathogen assessment, all of which can be gathered into a toolbox from which regulators and operators alike can select appropriate pathogens for monitoring and optimization of MAR practices. Combined with improved knowledge of pathogen fate and transport obtained through lab- and pilot-scale studies and supported by modeling, this foundation can be used to select appropriate, site-specific pathogens for regarding a more efficient pathogen retention, ultimately protecting public health and reducing costs. This paper outlines a new 10 step-wise workflow for moving towards determining robust removal credits for pathogens based on risk management principles. This approach is tailored to local conditions while reducing overly conservative regulatory restrictions or insufficient safety contingencies. The workflow is intended to help enable the full potential of MAR as more planned water reuse systems are implemented in the coming years.



The management of urban wastewater systems and the associated modelling of these systems has become indispensable in today's world. In order for these models to represent reality as accurately as possible, a reliable calibration is essential. Water level data is used as a standard, but due to expensive sensors and harsh conditions in the sewer, data can only be collected at a few key points of the system. One novel solution, that has experienced an upswing in recent years, is collecting data using low-cost temperature sensors. Two sensors are needed; one is placed in the stream; the other is placed at the crest of the weir. In the case of dry weather, the sensor measures the air phase, whereas, in the case of Combined Sewer Overflow (CSO), the discharged storm and wastewater is measured. The start and end of a CSO event can be determined via the merging of measured temperature values in both points of the overflow structure. Due to this method, the duration of CSO events in a sewer system can be detected.

In this work, the potential benefits of this novel method for model calibration are assessed. Therefore, autocalibration runs with water level data and fictional temperature data were carried out via OSTRICH for a SWMM model located in Berlin. Furthermore, calibration runs with a different number of measuring sites were performed, to evaluate the amount of necessary measuring sites for a reliable calibration. In order to be able to compare the different approaches, a calibration period of 19 events was first required for the respective datatype. Next, a validation period which consisted of 18 events was carried out and evaluated by the R² of three water level measuring sites for both approaches to ensure comparability. It was revealed that the calibration with duration data based on temperature sensors was able to achieve results as good as the conventional approach using water level data. Due to low spatial distribution of the measuring sites in the model, it could not be finally answered if more measuring sites would yield to even better results. However, already with one measuring site, promising calibration outcomes could be achieved and thus, offers an alternative for water utilities and practitioners.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.