Zusammenfassung

Over the past decade, membrane bioreactors have been increasingly implemented to purify municipal wastewater. However, even with submerged modules which offer the lowest costs, the membrane bioreactor (MBR) technology remains in most cases more expensive than conventional activated sludge processes. In addition, the European municipal MBR market is to date a duopoly of two non-European producers, despite many initiatives to develop local MBR filtration systems. In 2005, the European Commission decided to finance four projects dedicated to further technological development of MBR process: the four projects AMEDEUS, EUROMBRA, MBR-TRAIN and PURATREAT were implemented from October 2005 up to December 2009 and joined their efforts within the coalition “MBR-Network” (www.mbr-network.eu). The present report synthesises the major outcomes of the project AMEDEUS, conducted from October 2005 up to May 2009. The AMEDEUS research project aimed at tackling both issues of accelerating the development of competitive European MBR filtration technologies, as well as increasing acceptance of the MBR process through decreased capital and operation costs. The project targets the two market segments for MBR technology in Europe: the construction of small plants (semi-central, 50 to 2,000 population equivalent or p.e., standardized and autonomous), and the medium-size plants (central, up to 100.000 p.e.) for plant upgrade.

Zusammenfassung

Over the past decade, membrane bioreactors have been increasingly implemented to purify municipal wastewater. However, even with submerged modules which offer the lowest costs, the membrane bioreactor (MBR) technology remains in most cases more expensive than conventional activated sludge processes. In addition, the European municipal MBR market is to date a duopoly of two non-European producers, despite many initiatives to develop local MBR filtration systems. In 2005, the European Commission decided to finance four projects dedicated to further technological development of MBR process: the four projects AMEDEUS, EUROMBRA, MBR-TRAIN and PURATREAT were implemented from October 2005 up to December 2009 and joined their efforts within the coalition “MBR-Network” (www.mbr-network.eu). The present report synthesises the major outcomes of the project AMEDEUS, conducted from October 2005 up to May 2009. The AMEDEUS research project aimed at tackling both issues of accelerating the development of competitive European MBR filtration technologies, as well as increasing acceptance of the MBR process through decreased capital and operation costs. The project targets the two market segments for MBR technology in Europe: the construction of small plants (semi-central, 50 to 2,000 population equivalent or p.e., standardized and autonomous), and the medium-size plants (central, up to 100.000 p.e.) for plant upgrade.

Zusammenfassung

Membrane bioreactors (MBRs) have been increasingly employed for municipal and industrial wastewater treatment in the last decade. The efforts for modelling of such wastewater treatment systems have always targeted either the biological processes (treatment quality target) as well as the various aspects of engineering (cost effective design and operation). The development of Activated Sludge Models (ASM) was an important evolution in the modelling of Conventional Activated Sludge (CAS) processes and their use is now very well established. However, although they were initially developed to describe CAS processes, they have simply been transferred and applied to MBR processes. Recent studies on MBR biological processes have reported several crucial specificities: medium to very high sludge retention times, high mixed liquor concentration, accumulation of soluble microbial products (SMP) rejected by the membrane filtration step, and high aeration rates for scouring purposes. These aspects raise the question as to what extent the ASM framework is applicable to MBR processes. Several studies highlighting some of the aforementioned issues are scattered through the literature. Hence, through a concise and structured overview of the past developments and current state-of-the-art in biological modelling of MBR, this review explores ASMebased modelling applied to MBR processes. The work aims to synthesize previous studies and differentiates between unmodified and modified applications of ASM to MBR. Particular emphasis is placed on influent fractionation, biokinetics, and soluble microbial products (SMPs)/exo-polymeric substances (EPS) modelling

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.