Zusammenfassung

Reactive multicomponent transport modeling was used to investigate and quantify the factors that affect redox zonation and the fate of the pharmaceutical residue phenazone during artificial recharge of groundwater at an infiltration site in Berlin, Germany. The calibrated model and the corresponding sensitivity analysis demonstrated that temporal and spatial redox zonation at the study site was driven by seasonally changing, temperature-dependent organic matter degradation rates. Breakthrough of phenazone at monitoring wells occurred primarily during the warmer summer months, when anaerobic conditions developed. Assuming a redoxsensitive phenazone degradation behavior the model results provided an excellent agreement between simulated and measured phenazone concentrations. Therefore, the fate of phenazone was shown to be indirectly controlled by the infiltration water temperature through its effect on the aquifer’s redox conditions. Other factors such as variable residence times appeared to be of less importance.

Greskowiak, J. , Massmann, G. , Nützmann, G. , Prommer, H. (2006): Hydrogeochemical changes of seepage water during artificial recharge of groundwater in Berlin, Germany.

p 6 In: 5th International Symposium on Management of Aquifer Recharge / IHP-VI, Series on Groundwater. Berlin. 11. - 16.6.2005

Zusammenfassung

The spatial and temporal evolution of the seepage water chemistry below an artificial recharge pond was investigated to identify the impact of dynamic changes in water saturation and seasonal temperature variations. Geochemical analysis of the pond water, suction cup water and groundwater showed that during summer, nitrate and manganese reducing conditions dominate as long as saturated conditions prevail. Iron and sulphate reduction occur only locally. When the sediment below the pond becomes unsaturated, atmospheric oxygen penetrates from the pond margins leading to re-oxidation of previously formed sulphide minerals and enhanced mineralisation of sedimentary particulate organic carbon. The latter promotes the dissolution of calcite. During winter, both the saturated and the unsaturated stage were characterised by aerobic conditions. Thereby, nitrification of sedimentary bound nitrogen could now be observed because nitrate is not immediately consumed, as is the case during summer. This suggests that nitrification below the pond might be less affected by seasonal temperature changes than nitrate reduction.

Zusammenfassung

Artificial recharge of groundwater is often used to either purify partially treated wastewater or to enhance the quality of surface water by percolation through a variably saturated zone. In many cases, the most substantial purification process within the infiltration water is the redox-dependent biodegradation of organic substances. The present study was aimed at understanding the spatial and temporal distribution of the redox reactions that develop below an artificial recharge pond near Lake Tegel, Germany. At this site, like at many artificial recharge sites, the hydraulic regime immediately below the pond is characterised by cyclic changes between saturated and unsaturated conditions. These changes, which occur during each operational cycle, result from the repeated formation of a clogging layer at the pond bottom. Regular hydrogeochemical analyses of groundwater and seepage water in combination with continuous hydraulic measurements indicate that NO3 - and Mn-reducing conditions dominate beneath the pond as long as water-saturated conditions prevail. Manganese-, Fe- and SO24 -reducing conditions are confined to a narrow zone directly below the clogging layer and in zones of lower hydraulic conductivity. The formation of the clogging layer leads to a steady decrease of the infiltration rate, which ultimatively causes a shift to unsaturated conditions below the clogging layer. Atmospheric O2 then starts to penetrate from the pond fringes into this region, leading to: (i) the re-oxidation of the previously formed sulphide minerals and (ii) the enhanced mineralisation of sedimentary particulate organic C. The mineralisation of sedimentary particulate organic C leads to an increased H2CO3 production and subsequent dissolution of calcite.

Greskowiak, J. , Prommer, H. , Vanderzalm, J. , Pavelic, P. , Dillon, P. (2005): Quantifying biogeochemical changes during ASR of reclaimed water at Bolivar, South Australia.

p 6 In: 5th International Symposium on Management of Aquifer Recharge / IHP-VI, Series on Groundwater. Berlin. 11.-16.6.2005

Zusammenfassung

A modelling study was carried out to provide a process-based quantitative interpretation of the biogeochemical changes that were observed during an ASR experiment in which reclaimed water was injected into a limestone aquifer at a field-site near Bolivar, South Australia. A site-specific conceptual model for the interacting hydrodynamic and biogeochemical processes that occur during reclaimed water ASR was developed and incorporated into an existing reactive multi-component transport model. The major reactive processes considered in the model were microbially mediated redox reactions, driven by the mineralisation of organic carbon, mineral precipitation/ dissolution and ion exchange. The study showed that the geochemical changes observed in the vicinity of the ASR well could only be adequately described by a model that explicitly considers microbial growth and decay processes, while an alternative, simpler model formulation based on the assumption of steady state biomass concentration failed to reproduce the observed hydrochemical changes. However, both, the simpler and the more complex model approach were able to reproduce the geochemical changes further away from the injection/extraction well. These changes were interpretated as a result of the combined effect of ion exchange, calcite dissolution and mineralisation of dissolved organic carbon.

Zusammenfassung

Managed aquifer recharge is an increasingly popular technique to secure and enhance water supplies. Among a range of recharging techniques, single-well aquifer storage and recovery (ASR) is becoming a common option to either augment drinking water supplies or facilitate reuse of reclaimed water. For the present study a conceptual biogeochemical model for reclaimed water ASR was developed and incorporated into an existing reactive multicomponent transport model. The conceptual and numerical model for carbon cycling includes various forms of organic and inorganic carbon and several reactive processes that transfer carbon within and across different phases. The major geochemical processes considered in the model were microbially mediated redox reactions, driven by the mineralization of organic carbon, mineral dissolution/ precipitation, and ion exchange. The numerical model was tested and applied for the analysis of observed data collected during an ASR field experiment at Bolivar, South Australia. The model simulation of this experiment provides a consistent interpretation of the observed hydrochemical changes. The results suggest that during the storage phase, dynamic changes in bacterial mass have a significant influence on the local geochemistry in the vicinity of the injection/extraction well. Farther away from the injection/extraction well, breakthrough of cations is shown to be strongly affected by exchange reactions and, in the case of calcium, by calcite dissolution.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.