Zusammenfassung

Im Projekt E-VENT wurden innovative Verfahren der kommunalen Abwasserreinigung und Klärschlammbehandlung untersucht, um damit den Energieverbrauch von Klärwerken und die damit verbundenen Emissionen von Treibhausgasen (THG) zu senken. Nach einem Screening verschiedener Technologien wurden dazu Labor- und Pilotversuche zur thermischen Hydrolyse von Klärschlamm und zur Abwasserbehandlung mit granuliertem Belebtschlamm im Nereda®Verfahren durchgeführt. Aufbauend auf den Versuchsergebnissen wurden für ein Berliner Klärwerk verschiedene Varianten für einen zukünftigen Neubau modelliert und bewertet, um das Potential der innovativen Verfahren zur Senkung von THG-Emissionen unter den spezifischen Randbedingungen in Berlin abzuschätzen. Abschließend wurden auch die Investitions- und Betriebskosten der neuen Verfahren mit einer konventionellen Referenzvariante verglichen. Die Versuche zur thermischen Hydrolyse zeigen, dass der Faulgasertrag aus dem Klärschlamm damit deutlich erhöht werden kann (bis zu +26%). Gleichzeitig erhöht sich aber auch die Rückbelastung des Faulschlammzentrats mit Phosphor, Stickstoff und refraktären organischen Stoffen. Neben dem erhöhten Aufwand zur Behandlung des Zentrats kann vor allem der refraktäre organische Anteil die Ablaufqualität der Klärwerke deutlich verschlechtern, besonders bei Thermo-Druck-Hydrolyse. Bei thermo-alkalischer Hydrolyse konnte im Pilotversuch ein Mehrgasertrag von +19% im Jahresmittel sowie eine moderate Belastung des entstehenden Zentrats gezeigt werden, das die Ablaufwerte des Klärwerks nicht signifikant verschlechtert. Im Pilotversuch zum Nereda®-Verfahren wurde ein stabiler Betrieb mit granuliertem Belebtschlamm erreicht, der eine gute biologische Reinigungsleistung für Phosphor und Stickstoff zeigte. Die hohen Anforderungen an die Ablaufwerte konnten jedoch nicht zuverlässig erreicht werden. Wie auch im konventionellen Belebtschlammverfahren ist dabei die Verfügbarkeit von Kohlenstoff (CSB/N-Verhältnis) ein möglicher limitierender Faktor für die biologischen Prozesse und die erreichbare Ablaufqualität. Darüber hinaus wurde ein erhöhter Anteil von Feststoffen im Ablauf des Nereda®-Verfahrens festgestellt, der zur Erreichung der vorgegebenen Zielwerte eine Nachreinigung über Filtration erforderlich macht. Vor einer großtechnischen Umsetzung sind daher weitere Untersuchungen in größerem Maßstab notwendig, um die zuverlässige Einhaltung der geforderten Überwachungswerte zu prüfen. Die Messung von Lachgas ergab relativ hohe Emissionsfaktoren dieses starken THG für die Nereda®-Pilotanlage. Die Bewertung der Verfahren für einen zukünftigen Neubau des Klärwerks Stahnsdorf zeigen, dass die innovativen Verfahren die Energiebilanz gegenüber einer konventionellen Referenz weiter verbessern können. Dabei werden die möglichen Vorteile einer thermo-alkalischen Hydrolyse im Faulgasertrag durch den Mehraufwand auf dem Klärwerk und auch durch geringere Energierückgewinnung in der Klärschlammentsorgung im Modell ausgeglichen. Beim Nereda®Verfahren sinkt der Verbrauch an Strom und Fällmitteln und verbessert so die Energiebilanz und senkt die damit verbundenen Emission von Treibhausgasen. Dabei ist zu beachten, dass wichtige Eingangsdaten weiter validiert werden sollten, um zu einer abschließenden Bewertung dieser Verfahren zu kommen. Die Schätzung der Investitions- und Betriebskosten ergab, dass die innovativen Verfahren Kostenvorteile bieten können. Insgesamt zeigte das Projekt, dass die hier untersuchten innovativen Verfahren ein Potential zur Senkung der THG-Emissionen der Abwasserreinigung bieten. Für den betrachteten Neubau des Klärwerk Stahnsdorf konnten dieser THG-Fußabdruck um bis zu 72% gesenkt werden, was einer Einsparung von 3700 Tonnen CO2Äquivalenten entspricht. Bei einer zukünftigen Einführung solcher innovativen Verfahren ist jedoch immer die zuverlässige Einhaltung der vorgegebenen Ablaufwerte als Primärziel der Abwasserreinigung zu garantieren und dafür in großtechnischem Maßstab zu überprüfen.

Zusammenfassung

Thermal alkaline pretreatment (TAP) of waste activate sludge (WAS) was carried out in pilot-scale over a year to investigate its seasonal effects on anaerobic digestion and its impact on dewaterability, sludge liquor quality and formation of soluble refractory COD (sCODref). Temperature of TAP was set at 65–70 °C and pH was increased by initial dosing of sodium hydroxide [NaOH] (50% w/w, 1–2.5 mL/L sludge) as alkali agent following 2–2.5 h reaction time. Pilot digesters were fed with primary sludge (PS) and hydrolyzed WAS (HWAS) and compared to a reference digester fed with PS and untreated WAS. Biogas yield increase due to TAP of WAS showed a sinusoidal trend throughout the year with maximum in summer (+42%), minimum in winter (+3%) and average of +20%, indicating a strong seasonal effect on TAP efficiency. Ammonium [NH4+-N], orthophosphate [PO43--P] and sulphate [SO42-] in sludge liquor increased by 34.6%, 17.0% and 21.6% with TAP, respectively. Centrifugation tests showed no significant difference in dewaterability of both digestates with respect to total solids of sludge cake. Normalized capillary suction time of digestate increased due to TAP, indicating a lower capability for water release. Furthermore, detected sCODref after batch aerobic biodegradation tests showed an increase of 30.3% with TAP. Hence, implementation of TAP of WAS in full-scale will potentially lead to an increase of 0.8–1.1 mg/L of sCODref in effluent of six wastewater treatment plants (WWTP) in Berlin. In conclusion, TAP of WAS leads to increase in biogas production with a slighter negative impact on effluent COD quality than high-temperature thermal hydrolysis.

Zusammenfassung

Thermal hydrolysis (TH) increases the anaerobic biodegradability of waste activated sludge (WAS), but also refractory organic and nutrient return load to a wastewater treatment plant (WWTP). This could lead to an increase in effluent chemical oxygen demand (COD) of the WWTP. The aim of this study was to investigate the trade-off between increase in biogas production through TH and anaerobic digestion and increase in refractory COD in dewatered sludge liquors at different temperatures of TH in lab-scale. WAS was thermally hydrolyzed in temperature range of 130e170 C for 30 min to determine its biomethane potential (BMP). After BMP test, sludge was dewatered and sludge liquor was aerated in Zahn-Wellens test to determine its non-biodegradable soluble COD known as refractory soluble COD (sCODref). With increasing temperature in the range of 130e170 C, BMP of WAS increased by 17e27%, while sCODref increased by 3.9e8.4%. Dewaterability was also enhanced through relative increase in cake solids by 12 e30%. A conversion factor was defined through mass balance to relate sCODref to volatile solids of raw WAS. Based on the conversion factor, expected increase in effluent CODs of six WWTPs in Berlin were predicted to be in the range of 2e15 mg/L after implementation of TH at different temperatures. It was concluded that with a slight decrease in temperature, formation of sCODref could be significantly reduced, while still benefiting from a substantial increase in biogas production and dewaterability improvement.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.