Rouault, P. , Waschnewski, J. , Schmitt, T. G. , Thamsen, P. U. (2016): Zukunftsorientierte Anpassung der urbanen Abwasserinfrastruktur-Einzelmaßnahmen. Projekt KURAS, Schwerpunkt “Abwassersysteme”.

Technische Universität Berlin, Technische Universität Kaiserslautern, Kompetenzzentrum Wasser Berlin gGmbH, Berliner Wasserbetriebe, Institut fu¨r Automation und Kommunikation e. V. Magdeburg

Rouault, P. , Waschnewski, J. , Schmitt, T. G. , Thamsen, P. U. (2016): Zukunftsorientierte Anpassung der urbanen Abwasserinfrastruktur- Leitfaden zum methodischen Vorgehen. Projekt KURAS, Schwerpunkt “Abwassersysteme”.

Technische Universität Berlin, Technische Universität Kaiserslautern, Kompetenzzentrum Wasser Berlin gGmbH, Berliner Wasserbetriebe, Institut fu¨r Automation und Kommunikation e. V. Magdeburg

Rouault, P. , Waschnewski, J. , Schmitt, T. G. , Thamsen, P. U. (2016): Zukunftsorientierte Anpassung der urbanen Abwasserinfrastruktur-Maßnahmenkombinationen. Projekt KURAS, Schwerpunkt “Abwassersysteme”.

Technische Universität Berlin, Technische Universität Kaiserslautern, Kompetenzzentrum Wasser Berlin gGmbH, Berliner Wasserbetriebe, Institut fu¨r Automation und Kommunikation e. V. Magdeburg

Zusammenfassung

Um einen guten Gewässerschutz zu gewährleisten und damit die Ziele der Europäischen Wasserrahmenrichtlinie umzusetzen, müssen auch die stofflich oft unterschätzten Niederschlagsabflüsse aus dem Trennsystem behandelt werden. Der Gesetzgeber hat im neuen Wasserhaushaltsgesetz § 55 geregelt, dass Niederschlagswasser entweder ohne Vermischung über eine Kanalisation abgeleitet werden soll, ortsnah versickert oder direkt (in Gräben) abgeführt wird. Der Neubau von Mischsystemen ist nicht mehr zugelassen. Die Belastung der Gewässer durch direkte Einleitung von Niederschlagswasser steigt, da dessen Verschmutzung u.a. durch das steigende Verkehrsaufkommen zunimmt. Vor allem Straßenabflüsse von Kreuzungen und auch Abflüsse von viel genutzten Parkplatzflächen können eine hohe Schadstoffbelastung aufweisen. Seit einigen Jahren wird deshalb in den meisten Bundesländern „behandlungsbedürftigem“ Niederschlagswasser unterschieden. Behandlungsbedürftiges Niederschlagswasser stammt überwiegend von Verkehrsflächen, die nach Angaben des Statistischen Bundesamtes annähernd 50 % der versiegelten Flächen in Deutschland ausmachen. Der Schadstoffeintrag von Wohn- oder Gewerbeflächen ist dagegen weitaus geringer. Daher steht die Behandlung von Niederschlagswasser von Verkehrsflächen zunehmend im Fokus. Anlagen zur Niederschlagswasserbehandlung werden bislang überwiegend „zentral“ am Auslass der Kanalisation angeordnet, die unterschiedlich belastete Flächen gemeinsam entwässern. Als zentrale Niederschlagswasserbehandlung kommen bisher Regenrückhaltebecken (RRB), die vorwiegend hydraulisch wirken, Regenklärbecken (RKB) mit und ohne Dauerstau, Retentionsbodenfilter (RBF) sowie Abscheideanlagen nach RiStWag zum Einsatz. Zur Nachrüstung bestehender Becken kommen Lamellenabscheider und technische Filteranlagen zur Anwendung. Besonders im dicht besiedelten urbanen Raum ist eine zentrale Behandlung von Straßenabflüssen aus Platzgründen nicht immer möglich. Um dennoch behandlungsbedürftiges Niederschlagswasser zu reinigen, stellen dezentrale Reinigungsanlagen eine Alternative und Ergänzung dar. Es existieren unterschiedliche Systeme auf dem Markt, welche auf dem Prinzip der Abscheidung durch Sedimentation, Filtration und Adsorption oder auf einer Kombination dieser Verfahren basieren. Als neue Sonderformen stehen Trägermaterialien wie Zeolithe, Zero-valentes Eisen (GEH) z.B. für die Behandlung von Niederschlagswasser, das von Kupferdächern stammt zur Verfügung. In einigen Projekten wurden dezentrale Reinigungsanlagen zur Behandlung von Straßenabflüssen bereits untersucht, meistens unter kontrollierten Randbedingungen. zwischen „nicht behandlungsbedürftigem“ und Um an die gewonnenen Ergebnisse anzuknüpfen und weitere Erfahrungen über ihre Leistung in situ und deren Betriebsaufwand zu sammeln, wurde am Fachgebiet Siedlungswasserwirtschaft der TU Berlin in enger Kooperation mit der Ingenieurgesellschaft Prof. Dr. Sieker mbH (IPS), dem Kompetenzzentrum Wasser Berlin (KWB), den Berliner Wasserbetrieben (BWB) und der Berliner Stadtreinigung (BSR) das Projekt „Dezentrale Reinigung von Straßenabflüssen“ bearbeitet. Die Ziele des Projektes bestanden darin, Aussagen über verschiedene Technologien zur dezentralen Reinigung von Straßenabflüssen hinsichtlich der stofflichen Rückhalteleistung und dem Betriebsverhalten zu treffen. Dafür wurden im öffentlichen Straßenraum in Berlin (Clayallee) sowie auf einem Betriebshof der Berliner Stadtreinigung verschiedene Systeme untersucht. Zusätzlich erfolgte eine Untersuchung der Anlagen unter definierten und reproduzierbaren Bedingungen an einem Teststand. Die Ergebnisse wurden mit den Erkenntnissen der in situ Untersuchung verglichen. Weiterhin wurden abschätzende Modellierungen auf Einzugsgebietsebene, eine Kostenvergleichsrechnung sowie eine Ökobilanz erstellt. Das Projekt lief vom 01.11.2012 bis zum 30.09.2015.

Kraus, F. (2016): Phosphorrecycling aus Klärschlamm.

Humuswirtschaft & Kompost aktuell 08/09: 8-9

Zusammenfassung

In der Debatte um Strategien des Phosphorrecyclings zeichnet sich immer mehr ab, dass ein Ende der bodenbezogenen Verwertung von Klärschlamm nicht zielführend ist, wenn Schlämme für dieses Recyclingverfahren qualitativ geeignet sind.

Zusammenfassung

Spree und Havel sind langsam fließende Gewässer, deren Wassermenge besonders durch die Reduzierung des Braunkohletagebaus am Oberlauf der Spree seit 1990 kontinuierlich zurückgeht. Die Berliner Wasserbetriebe leiten in diese Vorfluter das biologisch gereinigte Abwasser (Klarwasser) ein, das die Gewässersituation in Bezug auf Keime, NährstofFe und organisehe Spurenstoffe beeinflusst. Maßnahmen an der Quelle zur Vermeidung oder Verminderung des StofFeintrages in den Wasserkreislauf, eine Abwasserreinigung mit Ozonung, Pulverkohle sowie Membranfiltration könnten hier eine verbesserte Entfernung bewirken. Die Berliner Wasserbetriebe und das Kompetenzzentrum Berlin haben gemeinsam mit der TU Berlin zur Spurenstoff- und Keimentfernung das Verfahren der Ozonung von gereinigtem Abwasser durchgeführt. Das Ziel der Ozonung ist es, die Spurenstoffe möglichst weitreichend zu entfernen. Gleichzeitig lag der Fokus darauf, neben den Indikatororganismen für Fäkalverunreinigungen auch Krankheitserreger, besonders die Viren zu untersuchen, und zu bewerten. Es ist besteht das Interesse eine zukunftsweisende und kompakte Technologie, die alle Ziele umfasst, zu realisieren.

Zusammenfassung

Ozone process control in secondary effluent used for elimination of trace organic compounds (TrOCs) requires the use of surrogates, such as the relative reduction of UV absorption at 254 nm (DUVA254) to adapt the ozone dose to a varying water quality. In the present study, a closed-loop process control based on two online UVA254 measurements was successfully implemented and tested under realistic conditions with ozone doses from 0.2 to 1.05 mg-O3/mg-DOC at a pilot scale ozonation system with subsequent coagulation filtration at a municipal wastewater treatment plant (DOC ~ 13 mg/L, UVA254 ~27m-1, and nitrite peaks of up to 1.6 mg-N/L). It could be shown that measuring the UVA254 at the ozonation effluent was superior to the measurement of UVA254 at the filter effluent in terms of response time due to changes in water quality, whereas online measurement at the filter effluent showed a better agreement with laboratory data and a reduced maintenance interval due to less particles. Additional online nitrite measurement is not necessary as the ozone consumption by nitrite directly impacts DUVA254.

Zusammenfassung

To support decision makers in planning effective combined sewer overflow (CSO) management strategies an integrated modelling and impact assessment approach has been developed and applied for a large urban area in Berlin, Germany. It consists of an urban drainage model, a river water quality model and a tool for the quantification of adverse dissolved oxygen (DO) conditions in the river, one of the main stressors for urban lowland rivers. The coupled model was calibrated successfully with average Nash- Sutcliffe-efficiencies for DO in the river of 0.61 and 0.70 for two validation years. Moreover, the whole range of observed DO concentrations after CSO down to 0 mg L-1 is simulated by the model. A local sensitivity analysis revealed that in the absence of CSO dissolved oxygen principally depends on phytoplankton dynamics. Regarding CSO impacts, it was shown that 97% of the observed DO deficit can be explained by the three processes (i) mixing of river water with CSO spill water poor in DO, (ii) reduced phytoplankton activity due to CSO-induced turbidity and (iii) degradation of organic matter by heterotrophic bacteria. As expected, process (iii) turned out to be the most important one. However depending on the time lag after CSO the other processes can become dominant. Given the different involved processes, we found that different mitigation schemes tested in a scenario analysis can reduce the occurrence of critical DO deficits in the river by 30-70%. Overall, the study demonstrates that integrated sewer-river-models can be set up to represent CSO impacts under complex urban conditions. However, a significant effort in monitoring and modelling is a requisite for achieving reliable results.

Pallasch, M. , Matzinger, A. , Sommer, H. , Heinzmann, B. , Joswig, K. , Pawlowsky-Reusing, E. , Rouault, P. , Riechel, M. (2016): A modelling approach for assessing acute river impacts of realistic stormwater management strategies.

p 4 In: 8 th International Conference on Sewer Processes and Networks. Rotterdam, The Netherlands. 31 August – 2 September 2016

Zusammenfassung

Conventional sewer models such as SWMM or InfoWorks CS are widely used to analyse effects of relative runoff reduction or storage capacity increase on a global scale. However, the applied tools are usually insufficient for planning precise stormwater management strategies on city quarter scale. We propose a modelling approach that combines a 1D sewer model and a river water quality model with a detailed hydrological rainfall-runoff model that includes model components for a multitude of sustainable urban drainage systems (SUDS). The modelling approach is demonstrated to evaluate realistic measure combinations developed for a city quarter in Berlin, Germany. Results show that negative river impacts of combined sewer overflows (CSO), in our case fish-critical oxygen conditions, can be completely prevented with a set of adequate measures.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.