Cylindrospermopsis raciborskii, a cyanobacterium of tropical origin, can produce the toxin cylindrospermopsin (CYN). This originally tropical cyanobacterium (bluegreen algae) has now spread to the distant waters of the Berlin area. Cylindrospermopsin has been detected in two lakes in the area, but none of the C. raciborskii strains isolated here so far were found to produce the toxin. The main objectives of the CYLIN project were therefore to analyze the distribution and regulation of C. raciborskii and cylindrospermopsin and to determine which cyanobacteria are producing this toxin in order to establish a basis with which to predict the further course of development of this species and the related health hazards for humans. The CYLIN project was implemented as a three-part program. A screening program was first conducted in 2004 to test regional water bodies for the presence of cylindrospermopsin and potential CYN-producing cyanobacteria in order to obtain an overview of their distribution in the study region. A total of 142 regional water bodies were sampled once each in this qualitative analysis cylindrospermopsin and cyanobacteria. The screening program was followed by a monitoring program designed to generate quantitative data on the concentrations of dissolved CYN, particulate CYN, cyanobacteria and target environmental parameters at 20 selected lakes, which were sampled 3 times each. Last but not least, we investigated the seasonal dynamics of these parameters at two selected lakes in 2004 and 2005. Apart from this we isolated different cyanobacterial strains and conducted chemical and molecular biological analyses of CYN and CYNcoding genes, in order to identify CYN-producing cyanobacteria. The results show that C. raciborskii and CYN are much more widespread than was previously assumed. C. raciborskii was detected in 22 % of the investigated water bodies, and cylindrospermopsin in 52 %. Additionally, two other toxic cyanobacteria of tropical origin were found for the first time in the BerlinBrandenburg region, Anabaena bergii and Aphanizomenon aphanizomenoides. The mean and maximum CYN concentrations were 1 µg L-1 and 12 µg L-1, respectively. Since the particulate CYN fraction did not exceed 0.5 µg L-1, the dissolved CYN fraction was found to be responsible for the high CYN concentrations. The proposed guideline safety value for cylindrospermopsin in drinking water (1 µg L-1) was exceeded 18 times at 8 different lakes. Although Aphanizomenon flos-aquae (Nostocales) has been unequivocally identified as a producer of cylindrospermopsin, the observed cylindrospermopsin concentrations cannot be attributed to this cyanobacterial species alone. Aphanizomenon gracile was also identified as a potential CYN-producing cyanobacterium. Based on the findings of the CYLIN project, we recommend that cylindrospermopsin be included as a risk factor in drinking and bathing water quality assessments. To identify hazard conditions associated with this cyanotoxin, further investigations are needed to identify all cyanobacteria that produce cylindrospermopsin and to elucidate the mechanisms regulating the occurrence of CYN-producing cyanobacteria, CYN synthesis by these organisms, and CYN decomposition in aquatic ecosystems. Our analysis of C. raciborskii population dynamics showed that its germination is temperature-dependent and its population growth light-dependent. Population size was determined by the time of germination, that is, the earlier the time of germination, the bigger the population. Based on these findings, it appears highly likely that the climate-related early rise in water temperatures over the course of the years has promoted the spread of this species to temperate regions. Our hypothesis for the future course of cyanobacterial and cyanotoxin development in German waters is as follows: The combination of trophic decline and global warming works to the general benefit of cyanobacteria of the order Nostocales and leads to a shift in cyanobacterial species and toxin composition. This may ultimately lead to an increase in the incidence of neurotoxins as well as cylindrospermopsin.