Abstract

Currently, there is uncertainty about emissions of pharmaceuticals into larger closed ecosystems that are at risk such as the Baltic Sea. There is an increasing need for selecting the right strategies on advanced wastewater treatment. This study analysed 35 pharmaceuticals and iodinated X-ray contrast media in effluents from 82 Wastewater Treatment Plants (WWTPs) across Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland and Sweden. Measured concentrations from Finland and Denmark were compared to predicted effluent concentrations using different levels of refinement. The concentrations predicted by the Total Residue Approach, as proposed by the European Medicines Agency, correlated with R(2) of 0.18 and 0.031 to measured ones for Denmark and Finland, respectively and the predicted data were significantly higher than the measured ones. These correlations improved substantially to R(2) of 0.72 and 0.74 after adjusting for estimated human excretion rates and further to R(2) = 0.91 and 0.78 with the inclusion of removal rates in WWTPs. Temporal analysis of compound variations in a closely monitored WWTP showed minimal fluctuation over days and weeks for most compounds but revealed weekly shifts in iodinated X-ray contrast media due to emergency-only operations at X-ray clinics during weekends and an abrupt seasonal change for gabapentin. The findings underscore the limitations of current predictive models and findings (...) demonstrate how these methodologies can be refined by incorporating human pharmaceutical excretion/metabolization as well as removal in wastewater treatment plants to more accurately forecast pharmaceutical levels in aquatic environments.

Abstract

Steigende Sulfatkonzentrationen in der Spree geben Anlass zur Sorge, dass zusätzliche Verfahrensschritte zur Sulfatentfernung bei der Trinkwasseraufbereitung in Berlin notwendig werden könnten. Im Rahmen des BMWK-Projekts SULEMAN wurde eine detaillierte Studie der damit verbundenen Kosten und Umweltauswirkungen für das Wasserwerk Friedrichshagen in Berlin durchgeführt. Dabei wurde das Ionenaustauschverfahren CARIX mit der Niederdruck-Umkehrosmose bei verschiedener Sulfatbelastung im Rohwasser verglichen.

Abstract

Pathogen removal in managed aquifer recharge (MAR) systems is dependent upon numerous operational, physicochemical water quality, and biological parameters. Due to the site-specific conditions affecting these parameters, guidelines for specifying pathogen removal have historically taken rather precautionary and conservative approaches in order to protect groundwater quality and public health. A literature review of regulated pathogens in MAR applications was conducted and compared to up-and-coming indicators and surrogates for pathogen assessment, all of which can be gathered into a toolbox from which regulators and operators alike can select appropriate pathogens for monitoring and optimization of MAR practices. Combined with improved knowledge of pathogen fate and transport obtained through lab- and pilot-scale studies and supported by modeling, this foundation can be used to select appropriate, site-specific pathogens for regarding a more efficient pathogen retention, ultimately protecting public health and reducing costs. This paper outlines a new 10 step-wise workflow for moving towards determining robust removal credits for pathogens based on risk management principles. This approach is tailored to local conditions while reducing overly conservative regulatory restrictions or insufficient safety contingencies. The workflow is intended to help enable the full potential of MAR as more planned water reuse systems are implemented in the coming years.

https://www.ncbi.nlm.nih.gov/pubmed/36931188

DOI
Abstract

An innovative tool for modeling the specific flood volume was presented that can be applied to assess the need for stormwater network modernization as well as for advanced flood risk assessment. Field measurements for a catchment area in Kielce, Poland, were used to apply the model and demonstrate its usefulness. This model extends the capability of recently developed statistical and machine learning hydrodynamic models developed from multiple runs of the US Environmental Protection Agency (EPA) Storm Water Management Model (SWMM). The extensions enable the inclusion of (1) the characteristics of the catchment and its stormwater network, calibrated model parameters expressing catchment retention, and the capacity of the sewer system; (2) extended sensitivity analysis; and (3) risk analysis. Sensitivity coefficients of calibrated model parameters include correction coefficients for percentage area, flow path, depth of storage, and impervious area; Manning roughness coefficients for impervious areas; and Manning roughness coefficients for sewer channels. Sensitivity coefficients were determined with respect to rainfall intensity and characteristics of the catchment and stormwater network. Extended sensitivity analysis enabled an evaluation of the variability in the specific flood volume and sensitivity coefficients within a catchment, in order to identify the most vulnerable areas threatened by flooding. Thus, the model can be used to identify areas particularly susceptible to stormwater network failure and the sections of the network where corrective action should be taken to reduce the probability of system failure. The simulator developed to determine the specific flood volume represents an alternative approach to the SWMM that, unlike current approaches, can be calibrated with limited topological data availability; therefore, the aforementioned simulator incurs a lower cost due to the lower number and lower specificity of data required.

Winker, M. , Anterola, J. , Matzinger, A. , Trapp, J. H. (2023): Infokarten: Planungshilfe für eine klimaangepasste Stadtentwicklung.

Korrespondenz Wasserwirtschaft 2023 Vol. 16 Issue 2/23 Pages 91-98

Abstract

Wie können Kommunen eine klimaangepasste und wassersensible Stadtentwicklung auf Grundlage von blau-grün-grauen Infrastrukturen in ihre Planungsprozesse integrieren? Dies ist eine zentrale Frage, um die Potenziale, die eine Wasserbewirtschaftung mittels vernetzter blau-grün-grauer Infrastrukturen bietet, effektiv in Planungsprozessen nutzen zu können. Dafür ist es wichtig, die Ökosystemleistungen der einzelnen Maßnahmen in planerische Ziele zu übersetzen und diese schnell und einfach in Planungsworkshops mit Fachakteuren und Laien eintragen zu können, so dass eine Verständigung darüber und eine gemeinsame Planung möglich wird. Hierzu wurden im Forschungsprojekt netWORKS 4 sogenannte Infokarten zu 22 Infrastrukturbausteinen als partizipatives Planungstool entwickelt und in verschiedenen praxisnahen Workshops erprobt. Sie sind nun als freiverfügbare Planungshilfe für eine klimaangepasste Stadtentwicklung zugänglich.

Abstract

Das Projekt Suleman befasst sich mit der nachhaltigen, energieeffizienten Entfernung von Sulfat. Die Kosten der Verfahren und Technologien sollen gesenkt und der Wirkungsgrad der Trinkwasseraufbereitung erhöht werden. Technisch-wissenschaftliche Unsicherheiten bei der Anwendung bestehender Technologien sollen beseitigt werden. Hierfür wurden bei den teilnehmenden Wasserbetreibern in Hamburg die NiederduckUmkehrosmose und in Berlin das Ionenaustauschverfahren CARIX im technischen Maßstab getestet.

DOI
Abstract

Norovirus infections are among the major causes of acute gastroenteritis worldwide. In Germany, norovirus infections are the most frequently reported cause of gastroenteritis, although only laboratory confirmed cases are officially counted. The high infectivity and environmental persistence of norovirus, makes the virus a relevant pathogen for water related infections. In the 2017 guidelines for potable water reuse, the World Health Organization proposes Norovirus as a reference pathogen for viral pathogens for quantitative microbial risk assessment (QMRA). A challenge for QMRA is, that norovirus data are rarely available over long monitoring periods to assess inter-annual variability of the associated health risk, raising the question about the relevance of this source of variability regarding potential risk management alternatives. Moreover, norovirus infections show high prevalence during winter and early spring and lower incidence during summer. Therefore, our objective is to derive risk scenarios for assessing the potential relevance of the within and between year variability of norovirus concentrations in municipal wastewater for the assessment of health risks of fieldworkers, if treated wastewater is used for irrigation in agriculture. To this end, we use the correlation between norovirus influent concentration and reported epidemiological incidence (R²=0.93), found at a large city in Germany. Risk scenarios are subsequently derived from long-term reported epidemiological data, by applying a Bayesian regression approach. For assessing the practical relevance for wastewater reuse we apply the risk scenarios to different irrigation patterns under various treatment options, namely “status-quo” and “irrigation on demand”. While status-quo refers to an almost all-year irrigation, the latter assumes that irrigation only takes place during the vegetation period from May - September. Our results indicate that the log-difference of infection risks between scenarios may vary between 0.8 and 1.7 log given the same level of pre-treatment. They also indicate that under the same exposure scenario the between-year variability of norovirus infection risk may be > 1log, which makes it a relevant factor to consider in future QMRA studies and studies which aim at evaluating safe water reuse applications. The predictive power and wider use of epidemiological data as a suitable predictor variable should be further validated with paired multi-year data.

https://www.sciencedirect.com/science/article/pii/S0043135422010259

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.