Abstract

This study aimed at characterizing the groundwater flow pattern in a semi-arid agricultural area in northern India crossed by an intermittent monsoon-controlled watercourse, the Najafgarh drain. More specifically, it focused on studying the impact of groundwater recharge from the riverbed to the regional aquifer using hydrogeochemical and isotopic data. Significant hydrogeochemical zonation was observed between the northern, central and southern sides of the drain, linked to different mineralization processes and mixings. Northward from the drain, groundwater was mainly brackish (4.1–23.4 mS/cm), due to dissolution of evaporites (halite and anhydrite). Southward from the drain, mostly fresh groundwater was found (from 0.5 to 2.3 mS/cm), revealing notable cation exchange processes. In the vicinity of the drain (central area), mineralization was intermediate (0.7–4 mS/cm) and groundwater showed low geochemical evolution, supposing a distinct origin. Stable isotopes of water (d18O, d2H) confirmed that central groundwater was not a simple mixing between northern and southern groundwater masses, but had a significant component of infiltrated surface water from the drain. Potentiometric data supported these findings and confirmed the contribution of the drain to the recharge of the aquifer, setting up a hydraulic barrier between north and south, despite surface water availability limited to the monsoon season and low hydraulic conductivity of the riverbed. This study demonstrates the value of the geochemical and isotopic analysis of groundwater to characterize groundwater flow pattern in peri-urban agricultural areas, especially surface water–groundwater interactions.

Sprenger, C. , Monninkhoff, B. , Tomsu, C. , Kloppmann, W. (2016): Numerical and analytical models for natural water treatment systems in the Indian context.

p 317 In: Wintgens T., Nattorp A., Elango L. & Asolekar S. R. [eds.], Natural Water Treatment Systems for Safe and Sustainable Water Supply in the Indian Context: Saph Pani. IWA Publishing 10.2166/9781780408392

Abstract

The paper presents semi-analytical mathematical model to estimate unsteady groundwater recharge resulting from variable depth of water in a large water body, influenced by time variant inflows and outflows. The model has been derived by integrating Hantush’s (1967) analytical expression for water table rise due to recharge from a rectangular spreading basin into the water balance equation of the water body. The model has been applied to a test study site in Raipur (India) for assessing viability of Managed Aquifer Recharge (MAR) from a lake located on an area dominated by the massive limestone formation. The components of the water balance equation have been carried out by the comprehensive analysis of the hydrological and hydrogeological aspects of the lake. The hydrological components include

Gröschke, M. , Frommen, T. , Grützmacher, G. , Schneider, M. (2014): Development of Ammonium Concentrations at a Riverbank Filtration Site in Delhi (India) – Water-Sediment Interactions from Infiltration to Production.

p 25 In: Tagung der Fachsektion Hydrogeologie der Deutschen Gesellschaft für Geowissenschaften 29-31 May 2014. Bayreuth, Germany. 2014-05-30

Abstract

Hydrogeochemical and hydrodynamic surface/groundwater interactions were investigated at the urban floodplain aquifer in Delhi, India. The heavily polluted Yamuna River is in hydraulic contact to the groundwater and river seepage results in a contamination plume. A conceptual redox zonation was developed based on the occurrence or absence of terminal electron acceptors. The redox zonation shows an inverted zonation from sulphate-reducing conditions close to the river over manganese- and iron-reducing conditions to a mixed oxic/suboxic zone. This study shows that the occurrence of problematic substances such as ammonium and arsenic in the groundwater is a consequence of the high load of untreated sewage in the river in combination with losing river conditions. Sequential extraction of aquifer material was performed to obtain information on geochemical availability of arsenic associated with different mineral phases and binding forms. Geogenic and anthropogenic arsenic sources contribute to overall arsenic concentration, and arsenic is found to be attributed mainly to amorphous iron oxide and sulphidic phases in the sediment. The contamination plume at the urban floodplain aquifer makes the groundwater unfit for drinking water purposes.

Abstract

In Chennai (India) public water supply and agriculture depend on groundwater to various extents, but the valuable resource shows increasing salinity over the past decades due to seawater intrusion. This study aims at identifying major hydrogeological processes which lead to salinity ingress in the main aquifer and investigates the effect of MAR structures such as check dams. Regional hydrochemistry is discussed by a combination of stiff diagrams, Cl/Br ratios, ion exchange diagram and stable isotopes (d18O, dD). The identified hydrogeochemical processes were high saline evolution due to intensive seawater evaporation for commercial salt production and typical ion displacement under refreshening and salinization conditions. Stable isotopes give new insights on (1) mixing processes of different end members (2) occurrence and degree of evaporation in ground- and surface water and (3) isotopical characterisation of groundwater recharge of the region. The identified processes were summarized in a conceptual model of the region. © 2014 Springer-Verlag Berlin Heidelberg.

Boisson, A. , Sprenger, C. , Lakshmanan, E. , Picot-Colbeaux, G. , Ghosh, N. C. , Ahmed, S. , Kumar, S. , Singh, S. , Thirunavukkarasu, M. (2013): Documentation of acquired data and conceptual model of MAR impact input for WP5 modelling.

Bureau de recherches géologiques et minières, Freie Universität Berlin, Kompetenzzentrum Wasser Berlin gGmbH

Abstract

This report aims at documenting the scientific evidence at 4 managed aquifer recharge (MAR) sites in India after 18 months duration of the EU (European Union) funded project SAPH PANI. The site investigations include compilation of previously existing data, a wide range of field experiments, surface-/groundwater and sediment sampling, data analysis, interpretation and the development of (preliminary) conceptual models. The MAR sites are realised under a wide range of geological and hydrological conditions and the covered aspects can be summarised as:…

Abstract

Until around 2004, the term riverbank filtration (RBF) or simply bank filtration (BF, a unified term for river and lake bank / bed filtration) was not commonly used in context to drinking water supply in India. The abundant recharge of traditional dug wells (used for drinking and irrigation) located near surface water bodies (mainly rivers but also some lakes) by very low-turbidity water via natural bank filtration during and after the monsoon has been recognised in India for a very long time. Induced bank filtration has been suggested in the 1970s to address the growing agricultural irrigation demand in the alluvial plains along the Ganga River by inducing recharge from surface water bodies during and after the monsoon (Chaturvedi and Srivastava 1979). Documented evidence till date suggests that induced bank filtration has been used in India for at least 56 years, although even older BF systems may exist. In Nainital, bank filtrate has been abstracted from Nainital Lake since 1956 (Kimothi et al. 2012). BF supplements existing surface and groundwater abstraction for drinking water supply in the cities of Ahmedabad (by the Sabarmati River), Delhi and Mathura (Yamuna) and Nainital (Nainital Lake); on the other hand in Haridwar and Patna (Ganga), and Medinipur and Kharagpur (Kangsabati), BF is used as an alternative to surface water abstraction and to supplement groundwater abstraction (Sandhu et al. 2012). Considering the continuously growing demand for drinking water in sufficient quantities, the emphasis at many BF sites has traditionally been on maximising the volumes of raw water abstracted. Furthermore, the results of a fact-finding study (Ray and Ojha 2005) on the use of BF for drinking water production in India on one hand confirmed that a number of river-side communities have been already using BF for a long time, but that on the other hand only scarce information on the hydrogeological conditions and water quality of these BF sites existed. Holistic investigations on water quality aspects and sustainability (qualitative and quantitative) of these existing BF sites began only after 2004. Water quality investigations conducted at the BF sites of Srinagar by the Alaknanda river (Ronghang et al. 2011), Haridwar and Nainital (Dash et al. 2008, 2010; Sandhu et al. 2011a), Delhi (Sprenger et al. 2008; Lorenzen et al. 2010) and Mathura (Singh et al. 2010; Kumar et al. 2012) and Patna (Sandhu et al. 2011b) showed that the main advantage of using BF in comparison to direct surface water abstraction lies in the removal of pathogens and turbidity. The surface water concentration of trace organic contaminants and their removal at the investigated sites has not been widely investigated, but has shown to be high at sites in Delhi and Mathura (Sprenger et al. 2008; Singh et al. 2010). For conventional treatment, high concentrations of organic contaminants requires high (40–60 mg/L) doses of chlorine prior to flocculation thus creating a greater risk for formation of carcinogenic disinfection by-products, as reported in Mathura (Singh et al. 2010; Kumar et al. 2012). In such situations BF is advantageous as a pre-treatment in order to reduce the necessary doses of chlorine prior to flocculation. Additional advantages of BF may also be seen during the monsoon season principally in the removal of turbidity and pathogens, as well as in the removal of color and dissolved organic carbon (DOC), UV absorbance, turbidity, total and thermotolerant coliform counts, endocrine disruptor compounds and organochlorine pesticides (Dash et al. 2008, 2010; Sandhu et al. 2011a; Thakur et al. 2009a, 2009b; Sprenger et al. 2011; Mutiyar et al. 2011). BF, however, does not present an absolute barrier to other substances of concern (e.g. ammonium) and some inorganic trace elements may even be mobilized. This has been observed in Delhi which has poor surface water quality (Sprenger et al. 2008), at which extensive post-treatment is applied to remove high levels of ammonium. The objective of this deliverable is to provide an overview of known BF schemes in urban areas of India where the abstraction of bank filtrate is intentional. The main water quality issues of concern are highlighted. Related published and unpublished data, as well as new data collected since the commencement of the Saph Pani project in October 2011, is presented for the BF schemes in Haridwar, Nainital, Srinagar (by the Alaknanda river in Uttarakhand), Delhi Mathura and Satpuli (by the Eastern Nayar river in Uttarakhand).

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.