Abstract

In Berlin wird Trinkwasser ohne aufwändige technische Aufbereitung über naturnahe Verfahren gewonnen. Ca. 80% des geförderten Rohwassers stammen aus Uferfiltration oder künstlich angereichertem Grundwasser (Möller & Burgschweiger 2008). Nach der Entfernung von Eisen und Mangan über Belüftung und Filtration wird im Routinebetrieb grundsätzlich auf eine chemische Desinfektion verzichtet. Zur Gewährleistung der hygienischen Sicherheit haben die Wasserschutzgebiete und hier insbesondere die engere Schutzzone (Zone II) daher eine wichtige Bedeutung. Deren Ausdehnung reicht von der Fassungsanlage bis zu der Linie, von der aus das genutzte Grundwasser 50 Tage im Grundwasserleiter fließt, bevor es über Brunnen zum Wasserwerk gefördert wird (DVGW 2006). Durch die Einhaltung dieser 50-Tage-Richtlinie wird v.a. der Schutz vor mikrobiellen Verunreinigungen angestrebt. Die Aufenthaltszeit des Wassers in der Untergrundpassage kann direkt durch Markierungsversuche ermittelt werden. Da solche Tracer-Untersuchungen zeitlich und technisch aufwändig sind, wurde im Rahmen verschiedener gemeinsamer Forschungsprojekte der Berliner Wasserbetriebe und des Kompetenzzentrums Wasser Berlin geprüft, mit welchen einfachen, kostengünstigen Methoden die Fließzeiten und die Auswirkungen sich ändernder klimatischer Randbedingungen im Betrieb der Grundwasseranreicherung und der Trinkwasserbrunnen überwacht werden können (Sprenger et al. 2016). Dabei wurden unter anderem kontinuierlich messende Temperatur-Druck-Sonden eingesetzt, sowie Geräte zur Quasi-Echtzeitmessung mikrobiologischer Parameter. Parallel wurde für einen Wasserwerksstandort in Berlin ein vereinfachtes numerisches Modell erstellt, mit dem Anreicherungsszenarien in Abhängigkeit der Temperatur des angereicherten Wassers gerechnet und bewertet werden können. Außerdem wurde der Einfluss der Wassertemperatur auf betriebliche Parameter der Oberflächenwasseraufbereitung untersucht. Die Untersuchungen sind ebenfalls Grundlage für risikobasierte Bewertungsansätze für hydraulische und mikrobiologische Parameter und die Ableitung betrieblicher Maßnahmen gegen eine Unterschreitung der 50-Tage-Verweilzeit.

Abstract

This study aimed at characterizing the groundwater flow pattern in a semi-arid agricultural area in northern India crossed by an intermittent monsoon-controlled watercourse, the Najafgarh drain. More specifically, it focused on studying the impact of groundwater recharge from the riverbed to the regional aquifer using hydrogeochemical and isotopic data. Significant hydrogeochemical zonation was observed between the northern, central and southern sides of the drain, linked to different mineralization processes and mixings. Northward from the drain, groundwater was mainly brackish (4.1–23.4 mS/cm), due to dissolution of evaporites (halite and anhydrite). Southward from the drain, mostly fresh groundwater was found (from 0.5 to 2.3 mS/cm), revealing notable cation exchange processes. In the vicinity of the drain (central area), mineralization was intermediate (0.7–4 mS/cm) and groundwater showed low geochemical evolution, supposing a distinct origin. Stable isotopes of water (d18O, d2H) confirmed that central groundwater was not a simple mixing between northern and southern groundwater masses, but had a significant component of infiltrated surface water from the drain. Potentiometric data supported these findings and confirmed the contribution of the drain to the recharge of the aquifer, setting up a hydraulic barrier between north and south, despite surface water availability limited to the monsoon season and low hydraulic conductivity of the riverbed. This study demonstrates the value of the geochemical and isotopic analysis of groundwater to characterize groundwater flow pattern in peri-urban agricultural areas, especially surface water–groundwater interactions.

Abstract

Subsurface travel time from the area of recharge to the abstraction during Managed Aquifer Recharge (MAR) is a critical parameter to ensure sufficient attenuation for hygienic parameters and other undesired substances. This study investigates seasonal temperature fluctuations observed in recharge water and MAR wells as a proxy for cheap and reliable travel time control at a basin infiltration site in Berlin-Spandau (Germany). Based on a time series from seven years of manual measurements, temperature fluctuations observed in infiltration basins and abstraction wells were fitted to sinusoidal functions. Peak values represented as local maxima and local minima from the fitted curves were used for the approximation of travel times between infiltration basin and abstraction wells. Uncertainty was assessed by Monte Carlo simulation of fitted curves based on standard deviation (2s) from residuals. The calculated error propagation from 2s in infiltration basin and 2s in wells range from 7 to 19 days. This study indicates that travel time approximation based on biased manual measurements of temperature is associated with high uncertainty. Nevertheless, the water temperature method for estimating subsurface travel times shows encouraging results and if temperature can be accurately determined, this method can be readily applied at other sites with similar characteristics.

Abstract

Hydrogeochemical and hydrodynamic surface/groundwater interactions were investigated at the urban floodplain aquifer in Delhi, India. The heavily polluted Yamuna River is in hydraulic contact to the groundwater and river seepage results in a contamination plume. A conceptual redox zonation was developed based on the occurrence or absence of terminal electron acceptors. The redox zonation shows an inverted zonation from sulphate-reducing conditions close to the river over manganese- and iron-reducing conditions to a mixed oxic/suboxic zone. This study shows that the occurrence of problematic substances such as ammonium and arsenic in the groundwater is a consequence of the high load of untreated sewage in the river in combination with losing river conditions. Sequential extraction of aquifer material was performed to obtain information on geochemical availability of arsenic associated with different mineral phases and binding forms. Geogenic and anthropogenic arsenic sources contribute to overall arsenic concentration, and arsenic is found to be attributed mainly to amorphous iron oxide and sulphidic phases in the sediment. The contamination plume at the urban floodplain aquifer makes the groundwater unfit for drinking water purposes.

Abstract

Emerging countries frequently afflicted by waterborne diseases require safe and cost-efficient production of drinking water, a task that is becoming more challenging as many rivers carry a high degree of pollution. A study was conducted on the banks of the Yamuna River, Delhi, India, to ascertain if riverbank filtration (RBF) can significantly improve the quality of the highly polluted surface water in terms of virus removal (coliphages, enteric viruses). Human adenoviruses and noroviruses, both present in the Yamuna River in the range of 10(5) genomes/100 mL, were undetectable after 50 m infiltration and approximately 119 days of underground passage. Indigenous somatic coliphages, used as surrogates of human pathogenic viruses, underwent approximately 5 log10 removal after only 3.8 m of RBF. The initial removal after 1 m was 3.3 log10, and the removal between 1 and 2.4 m and between 2.4 and 3.8 m was 0.7 log10 each. RBF is therefore an excellent candidate to improve the water situation in emerging countries with respect to virus removal.

Abstract

It was the aim of the EU funded research project TECHNEAU to investigate the relevance and feasibility of bank filtration (BF) plus post-treatment for newly industrialised and developing countries. Field studies at BF sites in Delhi (India) were supplemented by literature studies and modelling in order to investigate if this natural drinking water (pre-) treatment is a sustainable option to provide safe drinking water for countries like India. The results showed that especially for those substances that are of relevance in newly industrialised and developing countries subsurface passage can represent an efficient barrier. However, certain limiting factors for BF application also need to be considered: high ammonium levels in surface water, usually associated with high shares of poorly or un-treated sewage, will not be mitigated during subsurface passage and require extensive post-treatment. In order to support decision makers in the difficult task of assessing the feasibility of BF systems at a certain site a simple decision support system was developed. This simple tool enables to assess a range of abstraction rates and well locations for a specific field site that could fit with their needs (e.g. minimum required travel time or share of BF).

Abstract

In the densely populated semi-arid territory around Delhi, the water demand is rising continuously, while the surface- and groundwater resources are threatened by contamination and overexploitation. This is a typical scenario in many newly industrialising and developing countries, where new approaches for a responsible resources management have to be found. Bank filtration holds a great potential, thus being a low tech method and benefiting from the storage and contaminant attenuation capacity of the natural soil/rock. For this study, three field sites have been constructed to investigate bank filtration in different environments in and around the megacity with a main focus on inorganic contaminants. Hydraulic heads, temperature gradients and hydrochemistry of surface water and groundwater were analysed in three different seasons. Depending on sitespecific conditions, distinct hydrogeological conditions were observed and both positive and negative effects on water quality were identified. Most concerning issues are the impact of anthropogenic ammonia, the mixing with ambient saline groundwater and the mobilisation of arsenic during the reductive dissolution of manganese- and iron(hydr)oxides. Positive aspects are the dilution of contaminants during the mixing of waters from different sources, the sorption of arsenic, denitrification, and the precipitation of fluoride under favourable conditions.

Abstract

Submersible data loggers are widely used for groundwater monitoring, but their application often runs the risk of hardware and data loss through vandalism or theft. During a field study in India, the authors of this article experienced that well locks attract the attention of unauthorized persons and do not provide secure protection in unattended areas. To minimize the risk of losing data loggers, a cheap and simple solution has been invented to hide the instruments and associated attachments below the ground surface, inside observation wells. It relies on attaching the logger to a length of small-diameter pipe that is submerged at the bottom of the well, instead of attaching it to the top of the well. The small-diameter pipe with the logger is connected to a small bottle containing a magnet that floats on the water surface of the well and can be recovered using another bottle also with a magnet. A logger that is concealed in this way is difficult to detect and access without knowledge of the method and adequate removal tools. The system was tested and successfully applied for monitoring shallow

Abstract

Bank filtration (BF) is a well established and proven natural water treatment technology, where surface water is infiltrated to an aquifer through river or lake banks. Improvement of water quality is achieved by a series of chemical, biological and physical processes during subsurface passage. This paper aims at identifying climate sensitive factors affecting bank filtration performance and assesses their relevance based on hypothetical 'drought' and 'flood' climate scenarios. The climate sensitive factors influencing water quantity and quality also have influence on substance removal parameters such as redox conditions and travel time. Droughts are found to promote anaerobic conditions during bank filtration passage, while flood events can drastically shorten travel time and cause breakthrough of pathogens, metals, suspended solids, DOC and organic micropollutants. The study revealed that only BF systems comprising an oxic to anoxic redox sequence ensure maximum removal efficiency. The storage capacity of the banks and availability of two source waters renders BF for drinking water supply less vulnerable than surface water or groundwater abstraction alone. Overall, BF is vulnerable to climate change although anthropogenic impacts are at least as important.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.