Abstract

Integrierte Produktpolitik ist ein sehr junges Gebiet, bei dem man kaum auf Erfahrungswerte zurückgreifen kann. Benötigt werden kreative Lösungsansätze, die sich auch unkonventioneller Mittel und Wege bedienen. Dies stellt höchste Anforderungen an die Lernbereitschaft aller Beteiligten. Dabei ist es wichtig, eingefahrene Gleise zu verlassen. Dazu zählt u.a., dass Investitionsentscheidungen nicht mehr von den Abschreibungszeiträumen der Geräte abhängen, sondern von der Funktions- und Einsatzfähigkeit und der Wartungsorganisation. Und genau an diesem Punkt setzt das Geschäftsmodell des ITZM an, unterstützt durch den rechtlich neu gesetzten Rahmen mit der grundlegenden neuen Philosophie- und Strategieausrichtung der Wiederverwendung („Used is Useful“) in der EG-Richtlinie über „Elektro- und Elektronik-Altgeräte“. Das ITZM besteht im Kern aus vier Säulen: der Gebrauchtmessgerätebörse, dem Testfeld für neue Messgeräte und –systeme, der Informationsplattform über das Internet und der Ingenieurberatung. Das ITZM führt die Anwender/Nutzer und Hersteller von Messgeräten und Messsystemen auf den Gebieten der Abwasserbehandlung, Wasserversorgung, Gewässerüberwachung, Produktionsüberwachung und Laboranalytik zusammen, um im Wege des Informationsaustausches umfassend ihre Kauf- und Verkaufswünsche erfüllt zu bekommen. Dazu bietet das ITZM über seine Internetplattform Informationen zu den Gerätschaften in Form von Testergebnissen, Literaturhinweisen, Anwendererfahrungen (Einrichtung eines Forums zum Informationsaustausch) sowie kompetente Ingenieurberatung an. Über das Testfeld werden Messgeräte/-systeme untersucht und erprobt, um die Leistungsversprechen der Hersteller unter realen Bedingungen zu ermitteln. Das ITZM bringt über die Messgerätebörse gebrauchte Geräte nach Überprüfung und evtl. Reparatur sowie Funktionsprüfung mit Qualitätsgarantie wieder in den Markt, realisiert Wartung und Kundendienst und sorgt für ein sehr gutes Preis/Leistungsverhältnis. Als neutrales und autark arbeitendes Unternehmen stellt die Beratung der potenziellen Nutzer einen wesentlichen Faktor dar. In Sinne dieser Machbarkeitsstudie konnte nachgewiesen werden, dass die Gründung eines Unternehmens ITZM auf soliden Füßen steht. Konservative Abschätzungen über Mittelbedarf (Geschäfts- und Investitionskosten) und den zu erwartenden Mittelzufluss aus den Geschäftszielen ergeben eine solide Geschäftsgrundlage. Das ITZM soll als eigenständige Rechtsperson am Standort Berlin gegründet werden. Dadurch wird der Standort Berlin gestärkt, der insbesondere als „Tor zum Osten“ ein neues, bedeutendes Instrument erhält. Denn nach Kenntnis der Verfasser dieser Machbarkeitsstudie existiert derzeit in Deutschland und Europa keine vergleichbare Einrichtung; ebenso ist keine Planung für eine solche bekannt. Mit dem ITZM werden Arbeitsplätze in Berlin gesichert und gleichzeitig auch neue, u.a. technologisch sehr anspruchsvolle geschaffen. Die Bevölkerung des Landes Berlin sowie eine Reihe umgebender Ortschaften, die von den Berliner Wasserbetrieben mit Trinkwasser versorgt oder deren Abwasser durch dieses Unternehmen entsorgt und gereinigt wird, sowie weitere Einrichtungen des Landes Berlin können bei Inanspruchnahme von Leistungen des ITZM direkt profitieren und damit Geld sparen. Das geschätzte Einsparvolumen allein für Berlin liegt bei konsequenter Umsetzung der vorgeschlagenen Maßnahmen in der Größenordnung von mehreren hunderttausend Euro/Jahr. Bei der Einrichtung des ITZM wird auch eine geeignete Kooperation mit dem KompentenzZentrum Wasser Berlin gGmbH (KWB) angestrebt, so dass auch das KWB auf dem Sektor der Messgeräte und Messsysteme auf eine Kompetenz zurückgreifen kann, die überregional und international von herausragender Bedeutung ist.

Abstract

A suite of predictive quantitative models of phosphorus (P) dynamics in Lake Tegel and Schlachtensee has been developed. The results, specific to each lake, are set out below, together with general conclusions about management strategies, and some high priority areas for future research. Lake Tegel: 1. The inflow from the Havel to Lake Tegel has been estimated using both a discrete time step box model and a time integrated numerical model. There is good internal agreement between the 2 estimates of the Havel inflow as a mean fraction of the total inflows (~ 40 %) , as well as with the earlier work of Ripl (1993). The estimated residence times agree closely (~ 70 d). 2. There is considerable inter-annual and inter-seasonal variation in Havel inflows. The numerical model can be used to satisfactorily predict these as a function of the Havel discharge, OWA discharge, and water extraction (bank infiltration and recharge, r²=0.76). 3. Over the past 15 years Lake Tegel has been both a net source (1984-1992;2000-2002), and a net sink (1993 – 1999), for phosphorus. The Havel inflow is the most important component in the P budget of Lake Tegel. When the sediment is a source, the modelled internal P load is 2-4 fold of the OWA annual load. 4. The internal P load can be satisfactorily modelled (r²=0.72) as a function of the external P loads, the water works extractions, and the temperature and nitrate concentration in the hypolinmion. The sensitivity analyses indicate that temperature is the major controlling factor for the P release. The significance of nitrate has to be explored further, and identifying thresholds for parameters which trigger release remains to be done in years 2 and 3. 5.The sediment investigations indicate that the sediment P release is dominated by mineralisation, plus desorption at times of high mineralisation and FeS precipitation. 6. Sediment investigations indicate that artificial oxidation of the sediment surface will only impact on P release when the mineralisation is intense and sulphate reduction is prevented. 7. The internal store of mobilizable P in the sediments is small, the rate of mobilisation is high, and the water residence time is short; thus the internal P load will have no long term effects after the external load is reduced sufficiently (< 5 years, assuming an external load of zero). At present, the external P load is high enough to recharge the sediments. Schlachtensee: 1. The water balance of Schlachtensee can be modelled satisfactorily (r²=0.89) by considering precipitation, storm water discharges and a term to reflect groundwater flows, which yet needs to be validated. 2. Groundwater inflows, as unknown parameter, were determined from modelling by a constant groundwater inflow plus other variable components dependent on precipitation, the level of Schlachtensee, the extraction at Well Rehwiese and of the temperature; this still needs to be cross-checked with a more detailed analysis of groundwater data. 3. The long time development of the P concentration is dominated by the reduced external load from the OWA Beelitzhof. The modelled long term steady state is about 0.02 g P m3 (annual mean). Schlachtensee has been a sink for P since 1985. 4. Next to effects of the reduced external load, the P concentration in Schlachtensee is characterised by peaks occurring in autumn and winter. The cause is not conclusively identified, but is suspected to be due to loading from the steep shoreline, e.g. leaching P from fallen leaves or mobilisation of animal/human excreta deposited in the summer. 5. Modelling shows that in Schlachtensee the epilimnion exerts a dominant effect on the P dynamics. Although P accumulation occurs in the hypolimnion, this is only a small fraction of the total lake P content. P release is controlled mainly by temperature and redox conditions, as well as the hydrological regime. Whether or not thresholds for release can be identified from any of these remains to be investigated. 6.The sediment investigations indicate that the sediment P release is dominated by desorption due to FeS precipitation. 7. The internal store of mobilizable P in the sediments is small, the rate of mobilisation is moderate, and the water residence time is longer than Lake Tegel. Thus, though its contribution to the lake’s P pool is much smaller, the internal P load will continue to exert an effect for longer than in Lake Tegel after the removal of the external load. Assuming the external load to be zero, the mobilizable P-Pool will be released in about 5 years. Both lakes: Chlorophyll-a data is used to depict the reaction of phytoplankton biomass to reduced in-lake TP concentrations. Chlorophyll-a were recalculated without the phaeophytin correction, and investigations for TP thresholds that govern phytoplankton response were begun. TP thresholds in Lake Tegel appear to be higher (around 100 µg/L) than in Schlachtensee (around 30 µg/L). Further data evaluation, including analysis of monthly means and individual sampling dates, is needed. Management implications: 1. Lake Tegel and Schlachtensee have quite different behaviours and require different management strategies. The various models already developed provide a basis for exploring adapted management scenarios. An initial exploration has identified potentially effective strategies. 2. For Lake Tegel the results strongly point to the continuation of the current management strategy to limit the inflow of P rich Havel water into Lake Tegel, i.e. increasing the OWA discharge during summer, when the P concentration in the Havel, and the extraction by the Water Works, are at their highest. 3. As the P release from the sediment in Lake Tegel is mainly driven by the temperature above the lake bottom the stratification stability should be as high as possible.Therefore, operation of the aerators in a fashion to maintain the maximum possible stratification in summer is proving critically important. 4. The model results confirm that for Schlachtensee the P balance is no longer dominated by the inflows from the OWA Beelitzhof, thus any further efforts to reduce P loading will be more effective if concentrated on the other major external sources. 5. The dominant term in the P balance of Schlachtensee appears to be the autumn and winter deliveries, though the actual mode of delivery is still unclear. Identifying the source(s) is an important future research task. 6. Epilimnetic processes are dominant in Schlachtensee and thus no further measures are required to reduce the internal P loading from the sediments to the water column. Future Research Goals 1. Improving the P models for both lakes, for Lake Tegel particularly for the calculation of the internal loads and for Schlachtensee for calculating the external loads, 2. Developing the P models towards management models for both lakes by improving the calculation of the internal loads for Lake Tegel and the external loads for Schlachtensee, 3. Including model components for biological interactions and interfacing them within a transferable P process model to explain the process of trophic recovery, 5 4. Using the improved models for assessing the relative effects of external and internal measures aimed at modifying the P budget, e.g. seasonality of OWA output, aerator operation and seasonal changes in water residence time, 5. Analysing which responses of the lake components are continuous and which show thresholds, and identifying threshold values for the latter; in a second step including other lakes using literature and data provided by other partners, 6. Conducting specifically targeted field investigations to fill gaps, to validate the models and as supplement of monitoring by ILAT in order to uphold the long-term data series, as detailed in the proposal for continuation of the project; 7. Using the outcomes of 1 – 6 for optimised management scenarios for the two Berlin lakes. Together with the evaluation of literature and data from other lakes undergoing trophic recovery, general guidance on managing restoration and predictions of responses to reduced nutrient loading will be developed.

Abstract

The main goal of this project is to develop new sustainable sanitation concepts which have significant advantages in relation to ecological as well as to economical aspects compared to the conventional systems (end-of-pipe-system). After successful project completion, the new sanitation concept should be used in Berlin areas, where sewer systems are not installed, as well as other locations (national and international). The management of the project has been achieved as foreseen. No relevant modifications have been necessary. In relation to the technical development all eight tasks have been started. Some later than scheduled but this does not endanger the goal and end date of the project. The first results from the greywater treatment with the constructed wetland show that the effluent quality is comparable to the wastewater treatment plants of Berlin In contrary to the proposal the new sanitation concept using vacuum separation toilets will be realised in the office building instead of apartment building. Furthermore not fifteen but ten flats are taken into account for the project and all bathrooms will be completely retrofitted instead of installation of new toilet systems only. Due to the fact that external assistance for designing is necessary the costs for external assistance is higher than planned. The precise figure will be available earliest at the end of 2004. All modifications do not endanger the goal of the project. For the information and discussion with the national and international public and colleagues about this project many presentations, publications and visits of the demonstration project have been undertaken and organised, respectively. The envisioned progress up to the interim report in March 2005 will be the realisation and start up of operation of the sanitation concept in the apartment building, exchange of the gravity separation toilets against vacuum separation toilets in the office building, designing, installation and operation of the digester. Furthermore all work from subcontractors (Life-Cycle-Assessment, Urine treatment, Fertiliser usage) will continue. Different international presentations are also foreseen. In relation to the financial issues 325.906 € (21 %) of the total eligible costs of 1.552.116 € and 511.515 € (23 %) of the total real costs of 2.223.474 €, respectively, have been spent until now. The 30 % threshold of the total real costs will be achieved presumably at the end of 2004.

Grünheid, S. , Jekel, M. (2004): Behavior of Trace Pollutants During Bank Filtration and Ground Water Recharge of Wastewater-impacted Surface Waters.

p 12 In: 4th International Conference on Pharmaceuticals and Endocrine Disrupting Chemicals in Water. Minneapolis, Minnesota. 13 -15.10.2004

Abstract

Bank filtration and artificial recharge provides an important drinking water source to the city of Berlin. Due to water recycling, the introduction of persistent trace pollutants (e.g. pharmaceuticals) in the drinking water may be a concern. The project “Organic Substances in Bank filtration and Groundwater Recharge - Process Studies” at the Technical University of Berlin is part of the “Natural and Artificial Systems for Recharge and Infiltration (NASRI)”-project of the Berlin Centre of Competence for Water. The research objectives of this part of the project are to study the removal of bulk and trace organics at different field sites with different characteristics in Berlin. In Berlin’s public drinking water supply nearly 70% of the 220 Mio m3 per year originate from bank filtration and groundwater recharge (~56% from bank filtration and ~14% from groundwater recharge (BWB 2003)). Since the 19th century Berlin has relied on bank filtration with retention times of several months to produce “new” ground water. A semi-closed urban water cycle has been created with the growth of the city. At some bank filtration sites the surface water is strongly influenced by highly treated domestic waste water effluent (e.g. 15-30% in Lake Tegel) (Ziegler et al. 2002). Despite this indirect potable reuse, the bank filtration system continues to provide high quality water which is distributed without chlorination. This unique situation in Berlin was an interesting field site for a research project of the Berlin Center of Competence for Water. Recently, the break through of organic trace pollutants in bank filtration systems has been studied in various research projects. Especially, since improved analytical methods can detect in ranges below 1µg/l. Since the processes during bank filtration are very complex, it is difficult to predict the fate of trace organics during bank filtration or to estimate important factors of influence for their degradation. In addition to redox state, factors such as retention time, initial degradable carbon concentration, soil properties and hydrogeological conditions may affect the final concentration. Many studies revealed positive findings of pharmaceuticals, pesticides or industrial chemicals (Hiemstra et al. 2003, Heberer et al. 2001, Verstraeten et al. 2002) in bank filtrate. Compounds like carbamazepine and clofibric acid were reported to be partly recalcitrant during underground transport (Stan and Linkerhäger 1994, Ternes et al. 2002). Furthermore, Ternes and Hirsch (2000) reported the occurrence of x-ray contrast media in surface waters and in surface water influenced groundwaters, where they constitute a major fraction of the adsorbable organic iodine (AOI). The contrast media were found to be very polar, persistent and difficult to remove in wastewater treatment (Jekel and Wischnack 2000). Hartig (2000) reported the break through of antibiotic sulfonamides from surface water to monitoring wells more than 50 m off the lake front (residence time~3 months). But in most of the reported cases the concentration in the bank filtrate is much lower than in the surface water. Since this concentration decline is not only due to dilution, long term bank filtration appears to have the capability to reduce trace organic pollutant concentrations. It would be of great practical value to classify the important trace organic pollutants by degradability during bank filtration and to evaluate the conditions that are favorable for the removal of certain compounds. This study begins to clarify these issues for a few trace organic pollutants. The factors of influence for degradation are studied for model compounds that represent groups of trace pollutants. Additionally, the infiltration process is characterized by several bulk-organic parameters. The goal of the study is to provide a tool that can be merged with hydrogeological models and soil properties to predict the removal efficiency of a given field site.

Abstract

Bank filtration and artificial ground water recharge are important, effective, and cheap techniques for surface water treatment and removal of microbes, as well as inorganic, and some organic, contaminants. Nevertheless, physical, chemical, and biological processes of the removal of impurities are not understood sufficiently. A research project titled Natural and Artificial Systems for Recharge and Infiltration attempts to provide more clarity in the processes affecting the removal of these contaminants. The project focuses on the fate and transport of selected emerging contaminants during bank filtration at two transects in Berlin, Germany. Several detections of pharmaceutically active compounds (PhACs) in ground water samples from bank filtration sites in Germany led to furthering research on the removal of these compounds during bank filtration. In this study, six PhACs including the analgesic drugs diclofenac and propyphenazone, the antiepileptic drugs carbamazepine and primidone, and the drug metabolites clofibric acid and 1-acetyl–1-methyl–2-dimethyloxamoyl– 2-phenylhydrazide were found to leach from the contaminated streams and lakes into the ground water. These compounds were also detected at low concentrations in receiving public supply wells. Bank filtration either decreased the concentrations by dilution (e.g., for carbamazepine and primidone) and partial removal (e.g., for diclofenac), or totally removed PhACs (e.g., bezafibrate, indomethacine, antibiotics, and estrogens). Several PhACs, such as carbamazepine and especially primidone, were readily transported during bank filtration. They are thought to be good indicators for evaluating whether surface water is impacted by contamination from municipal sewage effluent or whether contamination associated with sewage effluent can be transported into ground water at ground water recharge sites.

Abstract

In Berlin, 70 % of the drinkinq water is derived from bank filtrate or artificially recharged water. Because the surface water system contains elevated proportions of secondary treated municipal sewage, a number of sewage indicators from various sources can be detected in the bank filtrate. An artificial recharge site and a bank filtration site in Berlin Tegel are introduced and compared in terms of their hydrogeological and hydrochemical properties. Because of a permanent clogging layer and the geological properties, travel times are slower at the BF site and the hydrochemical conditions are more reducing. First estimates for the reaction rate constants of oxygen and nitrate are obtained with exponential data fitting. Some of the effects of the different redox conditions on minor substances such as drug residues are highlighted.

Abstract

Simulation tools help develop an integrated approach for Berlin’s combined sewage system in which sewage overflows pose risk to groundwater and surface water quality

Wiese, B. , Holzbecher, E. , Rümmler, J. , Nützmann, G. (2004): Assessment of bank filtration pumping regimes on flow length and travel times: a case study.

p 5 In: International Conference on Finite-Elements-Models. Karlovy Vary, Czech Republic. 13. - 16.9.2004

Abstract

The effect of oscillating pumping regimes at the bank filtration site in Berlin Tegel is examined via a scenario based modelling study. There are several scenarios for the pumping regimes, some adopted from the operation of the plant by the Berlin Water Works (BWB), some hypothetical with a regular oscillating regime. A horizontal 2D model of the lower aquifer is set-up, in which the third type boundary condition is used to mimic the influence of an irregularly shaped till layer, overlying the main aquifer. Model results in form of flowpaths are presented for several pumping scenarios. They reveal that there is a substantial influence of the pumping regime on the flowpaths in the vicinity of the well gallery, while in the farfield, including the bank of the surface water body (here: Lake Tegel) the oscillating effect is rather small. It depends very much on the infiltration position on the bank, whether traveltime through the aquifer changes as effect of irregular pumping.

Abstract

The effect of oscillating pumping regimes at the bank filtration site in Berlin Tegel is examined via a scenario based modelling study. Several scenarios for the pumping regimes are calculated, some adopted from the operation of the plant by the Berlin Water Works (BWB), some hypothetical with a regular oscillating regime. Two of these are presented here. A horizontal 2D model of the lower aquifer is set-up, in which the third type boundary condition is used to mimic the influence of an irregularly shaped till layer, overlying the main aquifer. Model results in form of flowpaths are presented for several pumping scenarios. They reveal that there is a substantial influence of the pumping regime on the flowpaths in the vicinity of the well gallery, while in the far field, including the bank of the surface water body (here: Lake Tegel) the oscillating effect is rather small. It depends very much on the infiltration position on the bank, whether traveltime through the aquifer changes as effect of oscillating pumping regime.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.