We quantified the areal hypolimnetic mineralization rate (AHM; total areal hypolimnetic oxygen depletion including the formation of reduced substances) in two formerly eutrophic lakes based on 20 yr of water-column data collected during oligotrophication. The upward diffusion of reduced substances originating from the decomposition of organic matter in the sediment was determined from pore-water profiles and related to the time of deposition. More than 80% of AHM was due to degradation of organic matter in the water column (including sediment surface) and diffusion of reduced substances from sediment layers younger than 10 yr. Sediments older than 10 yr, including the eutrophic past, accounted for , 15% of AHM. This ‘‘old’’ contribution corresponds to a 20–43% fraction of the total sediment-based AHM. The contribution from old sediment layers to AHM is expected to be even lower in lakes with deeper hypolimnia (. 12 m). In summary, oxygen consumption in stratified hypolimnia is controlled mainly by the present lake productivity. As a result, technical lake management measures, such as oxygenation, artificial mixing, or sediment dredging, cannot efficiently decrease the flux of