Abstract

Purpose: The transport behavior of human pharmaceuticals in groundwater depends on a multitude of factors such as the physico-chemical conditions in the aquifer and the organic carbon content of the sediment, and, in particular, on the redox conditions in the groundwater. This is of special interest at managed aquifer recharge sites where the occurrence of trace organics is important for drinking water production. The aim of this study was to evaluate the possibility of influencing the redox system of the aquifer in a way that optimizes the potential of managed aquifer recharge systems to reduce the amount of trace organics. Materials and methods: Column studies were performed using natural and thermally treated sediments from an infiltration basin of the Berlin area, Germany. Special emphasis was placed on thermal treatment of the sediments to influence the total organic carbon (TOC) content in the sediment. In one experiment, the sediment was thermally pretreated at 550 °C, in two experiments the sediment was pretreated at 200 °C, and in one the sediment was untreated. Furthermore, the influence of ozonation, a very common disinfectant used in drinking water production, was studied in the experiments. The retardation and degradation parameters for primidone (PMD), carbamazepine (CBZ), and sulfamethoxazole (SMX) under different redox conditions were evaluated. Results and discussion: Oxic conditions were obtained in the experiment with low TOC (0. 06 wt%) in the sediment pre-treated at 550 °C. Anoxic conditions were predominant in two column experiments with a TOC content of 0. 17 wt% in the sediment, irrespective of the mode of treatment (natural or 200 °C). All three pharmaceutical compounds show almost conservative transport behavior with retardation factors between 1. 02 and 1. 25 for PMD, between 1. 06 and 1. 37 for CBZ, and between 1. 00 and 1. 08 for SMX. Differences in the transport behavior were observed depending on the TOC content of the sediment. For CBZ, and to a minor extent for PMD, the higher retardation factors were observed in the sediment with a TOC content of 0. 17 wt% under anoxic conditions. The ozonation of the influent water affects the influent concentrations of PMD, CBZ and SMX. However, it has no influence on the oxygen concentration of the column outflow. Conclusions: CBZ and PMD are retarded in the presence of organic matter in the aquifer. Variations of the TOC content of the sediment have a direct influence on the retardation of CBZ and PMD. The three human pharmaceuticals may be ranked in order of decreasing retardation: CBZ & PMD & SMX. The microbial activity in the experiments was not studied, although it can be assumed that the thermal pretreatment influences the microbial activity in the sediments. In particular, the microbial activity was severely inhibited at 550 °C, resulting in a shift of the redox conditions.

Abstract

The redox environment is of utmost importance for the removal of organic compounds during artificial recharge. Within the research project OXIRED-2 five laboratory sand column experiments with natural sediments from the Lake Tegel infiltration pond and with microsieved surface water from Lake Tegel (Berlin) were performed to study the possibility to control the redox environment. Special emphasis was given to the sediments, the set-up of the column experiments, and the contact time within the column. The sediment was used either untreated or heated to 200°C or 550°C to study the effect of activation of organic carbon at 200°C and the effect of at least partial removal of natural organic carbon at 550°C. Additionally, an artificially produced iron coated sand was used for a two-layer experiment to increase the residence time of compounds susceptible to sorption within a given redox zone. Results reveal an immediate decrease of oxygen content at the outflow of the column in every experiment. Likewise, the redox potential also dropped significantly and immediately after the experiments started. However, the redox potential was significantly lower (approximately – 200 mV) in the experiments with the untreated or slightly heated sediments, and higher (about + 300 mV) for the experiment with the sediment heated up to 550°C. The redox zones known in natural environments developed also within the experiments even down to sulfate reduction at experiment No. 2. Ozonation of the influent water did not change the redox environment at the outflow of the column indicating a high reduction capacity of the natural sediment in the column within the duration of the experiments of up to 19 days. A constant input of ozone and an extended duration of the experiments might lead to a depletion of organic carbon in the sand column which could increase the redox potential. However, a complete depletion of organic carbon is very unlikely for managed aquifer recharge systems. The two-layer experiment with natural sand and artificially produced iron coated sands revealed that the iron coated sands had no influence on the redox system and only slight effect on the transport of ions. However, combining layers with different functionality might show great opportunities for designing and controlling redox systems especially with specific residence times in different redox zones for certain compounds in mind.

Abstract

Natürliche und künstliche Systeme zur Infiltration von Wasser (im Englischen: Managed Aquifer Recharge) werden weltweit genutzt, um Grundwasserressourcen quantitativ oder qualitativ zu verbessern. Dies erfolgt beispielsweise bei der Uferfiltration oder künstlichen Grundwasseranreicherung zur Trinkwassergewinnung, bei der Klarwasserverregnung zur weiteren Abwasserreinigung und -nutzung oder bei der Injektion von Süßwasser als hydraulische Barriere in Salzwasserintrusionsgefährdete Grundwasserleiter. Dabei nutzt man nicht nur den mengenmäßigen Ausgleich von überbeanspruchten Grundwasserressourcen, sondern auch die Reinigungsleistung des Untergrundes für eine naturnahe und meist auch kostengünstige Wasseraufbereitung. In Berlin, wo seit über 150 Jahren Trinkwasser mittels Uferfiltration gewonnen wird, wurden in Zusammenarbeit mit den Berliner Universitäten in der Vergangenheit umfangreiche Untersuchungen zur Stoffelimination bei der Untergrundpassage durchgeführt. Diese zeigten, dass auch die Konzentrationen von organischen Spurenstoffen häufig bei der Infiltration oder weiteren Grundwasserleiterpassage zurückgehen. Eine statistische Auswertung von Beobachtungen an verschiedenen Standorten ergab, dass die Mehrheit der untersuchten Substanzen wie beispielsweise Clofibrinsäure, Diclofenac und Phenazon bevorzugt unter oxischen Bedingungen abgebaut werden oder generell eine gute Entfernung erfahren. Einige wie z.B. Carbamazipin oder Sulfamethoxazol werden vor allem unter anoxisch- bis anaeroben Bedingungen entfernt. Aus diesen Beobachtungen ergab sich die Frage, ob ein optimaler Redoxzustand bzw. eine optimal Redoxabfolge für Systeme wie Infiltrationsbecken definiert werden könnte. Erste theoretische Studien erfolgten auf der Basis verfügbarer Abbaukinetiken und unter Einbeziehung weiterer Redox-sensitiver Wasserinhaltsstoffe wie Nitrat und Eisen. Diese ergaben, dass eine Aufenthaltszeit von 30 Tagen im aeroben Milieu und 100 Tagen im anoxischen Milieu während der Untergrundpassage zu einer optimalen Entfernung Redox-sensitiver Problemstoffe führt. Jedoch können bereits 15 Tage aerobe und 2 Tage anoxische / anaerobe Untergrundaufenthalt zu einem deutlichen Rückgang dieser Stoffe führen. Generell sollte jedoch berücksichtigt werden, dass unter anoxischen bis anaeroben Bedingungen mit einer Mobilisierung geogener Spurenelemente wie Eisen und Mangan zu rechnen ist. Obwohl theoretisch eine Vielzahl an Möglichkeiten existiert, den Infiltrationsbereich, die hyporheische Zone und die Untergrundpassage im Hinblick auf eine optimierte Redoxzonierung zu modifizieren oder gar zu steuern, sind nur wenige technisch tatsächlich machbar. Weitere Untersuchungen sollen nun diejenigen Möglichkeiten identifizieren, die in die Praxis übertragbar sind und zu einer Optimierung der künstlichen und natürlichen Systeme zur Infiltration beitragen könnten.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.