Abstract

This report analyses a number of processes for material recovery at municipal wastewater treatment plants in their environmental impacts. Based on the method of Life Cycle Assessment, the analysis shows that material recovery can yield environmental benefits by reducing primary energy demand and related greenhouse gas emissions during operation. This is mainly due to operational savings in energy, chemicals or sludge amount which come in association with material recovery. Product quality assessment for potential contamination showed no unacceptable risks for human health or ecosystems during the application and use of recovered materials.

Remy, C. , Conzelmann, L. (2020): D6.4: Marketing campaign support material.

Kompetenzzentrum Wasser Berlin gGmbH

Abstract

Proper marketing of the SMARTechs and related products or services from the EU innovation action is crucial to enable a successful commercial exploitation of the project outputs. To help the project partners and product owners with this task, the project consortium decided to develop marketing support material for each technology, service or product developed and demonstrated in the action. This report contains 13 informative flyers for marketing purposes, which support the targeted communication towards key stakeholders in this sector. The two-page flyers include information on the challenge and goal of the process, service or product together with a graphical representation, a list of unique selling points and contact information of the respective partners. The uniform design generates a high memorability and a close association to the SMART-PLANT innovation action and provides professional marketing material for the targeted end-users such as wastewater treatment plant operators and managers or other professionals in this field.

Pan, Z. (2020): Assessment of N2O emissions from an SBR plant with aerobic granular sludge technology on pilot scale.

Master Thesis. FG Siedlungswasserwirtschaft. Technische Universität Berlin

Abstract

Wastewater treatment plants (WWTPs) are evolving towards a more sustainable manner, by which not only the effluent quality and operational costs but also the greenhouse gases (GHG) potential is incorporated into the assessment inventory. GHG emissions from the WWTPs include CH4, CO2 and N2O, of which the N2O is of special interest due to 265-fold CO2-equivalent. Thus, even a low amount of N2O is undesired. Aerobic granular sludge (AGS) is a promising biological nutrient removal technology due to considerable structural and microbiological distinctions compared with conventional activated sludge (CAS) flocs, leading to huge improvements of carbon footprint saving. Nevertheless, the N2O formation from the AGS reactor is likely higher than that from the CAS, in terms of sequence batch reactor (SBR) configuration and inherent complex mechanism. In addition, there wasn’t any long-term monitoring campaign on the AGS reactor focusing on N2O emissions so far.This study focusses on a N2O emission online monitoring campaign, which was carried out in a Nereda® AGS reactor treating domestic wastewater from the Berlin region, lasted more than 6 months, including two different phases, namely feeding with pre-treated and raw wastewater after aerated sand trap and 2mm sieve box. The off-gas was sucked from the top of the SBR reactor and measured with online gas analyzer. Then the emission factor (EF) was calculated based on the correlated influent nitrogen load, which was converted from the influent NH4-N concentration by fixed ratio of 0.8. During the first phase, the EF was equal to 2.97%, while during the second phase, the EF was equal to 4.52%. Generally, the EF calculated in terms of both phases was 3.71%. Compared with other long-term campaigns based on CAS and SBR processes, higher GHG potentials could be induced, which also challenges the predominance of the AGS reactors from the perspective of minimizing GHG when only considering the energy consumption into scope. In-depth analysis indicated that the hydroxylamine oxidation pathway was the most likely over the monitoring course and EF calculated during main aeration incorporate negligible fraction of N2O produced from the pre-denitrification phase. Correlation test combining two specific time frames showed the moderate positive correlation between temperature and EF, which was in contrast to what has been assumed before but coincided with the inference from the micro-level analysis of our study. The weak negative correlation ship of COD/N ratio and EF was reported for each individual phase. Due to the insignificant impact from pre-denitrification and exclusion of the post-denitrification phase, it could not be considered as reliable. In terms of narrow range of DO and no accumulation of nitrite, the weak negative correlation ship of DO and EF could not infer to any further conclusion. In addition, it should be noted that some uncertainties may distract the reliability of our results. High resolution online measurement should be applied for the determination of off-gas flow, COD and TNb concentration, instead of correlation method or infrequent laboratory analysis. The detection of dissolved N2O along the course are needed to provide more insights about the N2O formation during the process and to distinguish the contribution between aerated phase and non-aeration phase. At last, more frequent monitoring of the significant precursor nitrite and hydroxylamine is demanded to figure out the dominant pathway for AGS reactors.

Abstract

Während der letzten zwei Jahrzehnte ist ausgehend von einer zunächst naturwissenschaftlichtechnisch orientierten Umweltforschung eine stärker inter- und transdisziplinäre Nachhaltigkeitsforschung entstanden, welche die Beziehungen zwischen Menschen, Gesellschaft und Natur und die dabei feststellbaren krisenhaften Entwicklungen zu ihrem Gegenstand gemacht hat. In diesem fächerübergreifenden Forschungsfeld entstanden unterschiedliche konzeptionelle Ansätze für die systemische Analyse und das Management von Mensch-Umwelt-Systemen. Insbesondere im anglo-amerikanischen Sprachraum und in Skandinavien wurden verschiedene Konzeptionen von Resilienz entwickelt. Im Folgenden werden deren Potenziale diskutiert und für den Einsatz in der sozial-ökologischen Stadt- und Infrastrukturforschung mit anderen integrativen Konzepten wie Klimagerechtigkeit verglichen.

Abstract

Circular Agronomics, aims to foster the transition from a linear economy to a circular economy. Therefore, this deliverable focuses on circular solutions for waste and wastewaters originating from the food industry. In 2019, the “Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries” (BREF-document) was published by the European Commission. Based on that, the deliverable summarizes the state of the art of the technologies already in use and concludes their suitability for circular economy solutions. In Circular Agronomics, new technologies for the recovery of carbon, nitrogen, phosphorus and potassium are developed and investigated. So far, those technologies are not included in the BREF-document yet. Therefore, the concepts of the technologies are introduced in the deliverable. For a potential integration of those technologies in the BREF-document, the technologies are described in detail in the annex according to the required structure in the BREF-document. However, since the technologies are still under development, those descriptions are considered as a first draft. The authors suggest to update those descriptions at a later stage of the project prior to their potential integration in the BREF-document. Referring to the goal to recover carbon and nutrients, the deliverable presents a detailed characterization of the waste and wastewaters originating from the food industries. Based on that, the five most promising waste and wastewater streams regarding carbon recovery, nitrogen recovery, phosphorus recovery and potassium recovery were selected. For those streams and the corresponding recovery technologies four new concepts are suggested in the deliverable. In order to show the technology providers an overview of potential clients for their technologies and for those concepts, for each selected industry, the European country with the highest production rate was chosen. For this country, the regional distribution of the certain industry was determined.

Abstract

Zur Verminderung von Spurenstoffeinträgen in Oberflächengewässer wurden bereits einige Kläranlagen in Deutschland und der Schweiz um eine weitergehende Reinigungsstufe (Ozon oder Aktivkohle) erweitert. Zur Erzielung einer gleichbleibenden Spurenstoffelimination und einer gleichzeitigen Vermeidung von Fehldosierungen (Kosten, Rohstoffeinsatz) werden verlässliche Messverfahren und robuste MSR-Konzepte (Mess-, Regel- und Steuerung) benötigt. Im Rahmen des Projekts „MeReZon" (Schnelle und zuverlässige Messtechnik und Steuer-/Regelkonzepte für eine weitergehende Abwasserreinigung) wurde an einer Pilot-Ozonanlage zur Behandlung von gereinigtem Abwasser untersucht, unter welchen Randbedingungen eine verlässliche Onlinemessung möglich ist. Dabei wurde u.a. die Leistungsfähigkeit eines neu entwickelten Ultraschallreinigungsmoduls zur Vermeidung einer Messwertdrift durch Fouling untersucht und mit den Sonden bzw. Reinigungsmodulen anderer Hersteller in verschiedenen Konfigurationen verglichen. Dabei wurden deutliche Unterschiede festgestellt. Darauf aufbauend wurde das bestehende MSR-Konzept der Ozonanlage optimiert und ein alternierender Messbetrieb, d.h. abwechselnde Beschickung einer Messsonde mit Zu- bzw. Ablauf der Ozonung, implementiert. Die Ergebnisse zeigen, dass mit dem optimierten MSR-Konzept eine stabile Abnahme des SAK254 (SAK254) erzielt werden kann, welche mit der Spurenstoffelimination korreliert. Die erfolgreiche Umsetzung des alternierenden Messbetriebs ermöglicht die Ermittlung der SAK254 Abnahme mit nur einer Messsonde, was prinzipiell Vorteile bei einer Regelung der Ozondosis auf ein stabiles SAK254 mit sich bringt. Zudem konnte gezeigt werden, dass die Onlinemessung der Fluoreszenz eine praktikable Alternative zum SAK254 darstellt, da diese ebenfalls eine Änderung des Ozonbedarfs integral erfassen kann und mit der Spurenstoffelimination korreliert. Die gewonnenen Ergebnisse bieten Messgeräteherstellern wertvolle Anhaltspunkte wie sie ihre Onlinesonden und Reinigungsmodule weiter optimieren können. Das entwickelte MSR-Konzept bzw. der alternierende Messbetrieb kann von Betreibern von Ozonanlagen auf kommunalen Kläranlagen zur Optimierung bestehender oder zukünftiger Anlagen genutzt werden.

Abstract

The overall aim of the "Clear Waters from Pharmaceuticals" (CWPharma) project is to provide guidance on how to reduce the load of active pharmaceutical ingredients (APIs) entering the aquatic environment and especially the Baltic Sea. Even though different methods for reducing the amount of APIs entering the wastewater exist and, thus, "end-of-pipe" measures are also necessary. API usage cannot be completely avoided. Municipal wastewater treatment plants (WWTPs) are relevant point sources of APIs as they treat the wastewater from public households, hospitals, and industry of the connected catchment area. However, conventional "state-of-the-art" WWTPs can only remove APIs that are either easily biodegradable and/or absorbable to activated sludge, whereas others can pass the treatment process with no or only minor reductions. Therefore, reduction of a broad range of APIs can only be achieved by using targeted advanced wastewater treatment (AWT) techniques, such as ozonation or application of powdered and granular activated carbon. All of these technologies for API removal are already used at full-scale WWTPs and have proven their practical and economical suitability. This guideline is meant to provide an overview on how to plan, start, and operate AWT technologies for API elimination. The recommendations are based on the experiences and results from the CWPharma project, but also on the available knowledge from Germany and Switzerland, which is collected and distributed by competence centres such as the German Micropollutants Competence Centre Baden-Württemberg (KomS) Verfahrenstechnik Mikroverunreiniungen and the Swiss Plattform as well as by expert groups from the related water associations. Membrane separation via dense membrane such as nanofiltration (NF) or reverse osmosis (RO) was not considered in this guideline, as both technologies produce a brine with high API concentrations. At coastal WWTPs, this brine might be discharged directly to the sea in order to protect fresh water ecosystems, but this would not reduce the API load to the Baltic Sea. Thus, the brine also requires treatment, which makes this approach less economical in comparison to the other established API removal technologies.

Abstract

Elevated levels of active pharmaceutical ingredients (API) have been detected in the Baltic Sea for many years. These APIs are often discharged from hospitals, households, pharmaceutical manufacturing plants, and animal farms, among other sources. As APIs are not completely degraded in municipal wastewater treatment plants (WWTP), they are then transported to the Baltic Sea. Although research on the effects of APIs in the Baltic Sea has been ongoing, the consequences of API discharges on the environment, in terms of potentially risky ecological effects, have not yet been fully evaluated. The European Union’s Interreg Baltic Sea Region programme funded the Clear Waters from Pharmaceuticals (CWPharma) project, which quantified API loading into the Baltic Sea from six river basin districts. Seven Baltic Sea Region (BSR) countries were involved as CWPharma partners (Denmark, Estonia, Finland, Germany, Latvia, Poland and Sweden). Surface water, soil, and sediment samples were collected from coastal, rural, and agricultural locations and analysed for up to 80 APIs. By comparing the API concentrations detected in rivers with predicted no-effect levels (PNEC), the environmental risk of individual APIs was quantified. A GIS-based model was developed which allowed illustration and assessment of API loads into the Baltic Sea coming from the project partner countries, as well as evaluation of the impacts of various emission reduction scenarios. Different types of emission reduction measures were proposed. Reductions of API emission from WWTPs through the application of advanced wastewater treatment (AWT) technologies were experimentally validated at full- and pilot-scale. AWT technologies tested in CWPharma included full-scale ozonation and various post-treatment technologies, such as moving bed bioreactors, constructed wetlands, deep bed filters using sand/anthracite, and granular activated carbon. Additionally, 21 recommendations for other reduction measures focused on improving collection and disposal of unused pharmaceuticals and pharmaceutical waste, targeting various groups and emitters, were also developed. By simulating the variety of API reduction methods within the API loading model, the most effective measures for reducing API emissions could be determined. Similarly, both the costs and global warming potential of upgrading various classes of WWTPs with AWT in the form of ozonation or activated carbon were calculated for each CWPharma project partner country. This report summarizes the most important recommendations elicited from the CWPharma project.

Abstract

This report aims to identify good practices for environmental permitting of pharmaceutical plants in some Baltic Sea (BS) countries and spread them to other countries where they are lacking or inefficient. The objective is to enhance permitting of pharmaceutical plants within current legislation framework to obtain information on their active pharmaceutical ingredient (API) emissions to municipal WWTPs (MWWTPs) and environment, resulting in improved information on pharmaceutical emissions, and aiding with direct mitigation measures when necessary. The pharmaceutical industry is highly globalized, interconnected and heterogeneous both spatially and temporally. The pharmaceutical industry includes API-production and the production of pharmaceutical products. Emissions from these activities may vary significantly. Also, as many activities are patch processes, emissions of specific substances are likely to happen only sporadically. The pharmaceutical industry may also include (re)packaging and other activities. The UNESCO & HELCOM Status Report on Pharmaceuticals (2017) [1] contains some information on pharmaceutical production in Estonia, Finland and Sweden, but no information on permitting practices of pharmaceutical plants. Thus, this report fills in identified information gaps related to the production of pharmaceuticals, e.g. by HELCOM. The working method evaluates the current national practices for environmental permitting for pharmaceutical plants in all seven countries represented in the project CWPharma (Denmark, Estonia, Finland, Germany, Latvia, Poland and Sweden) with the aim of collecting some information also from Russia. In the Baltic Sea region (BSR), wide recommendations on good practices for environmental permitting of pharmaceutical plants are proposed to initiate the process that clarifies the role of the pharmaceutical industry as a possible source of APIs and to estimate the need for measures that control the pharmaceutical industry’s emissions. Additionally, the aim is to evaluate the industrial wastewater contracts between municipal wastewater treatment plants (MWWTPs) and pharmaceutical plants in each BS country, even if this task is more difficult than the task related to environmental permitting of pharmaceutical plants. These documents are not publicly available, and thus the information on contracts proved difficult to obtain. The BSR wide recommendations are aimed at formulating good practices for industrial wastewater contracts between MWWTPs and pharmaceutical plants. The activities of this report pose very high transnational relevance in the Baltic Sea region (i.e. transnational spreading of good practices), because the recommendations are based on the current good practices in BSR countries and improvements made for them. Furthermore, the objective is that the recommendations will be utilised and implemented in all Baltic Sea countries. The information presented in this report will be used to identify priority measures at a national level to reduce pharmaceutical emissions. The results will also increase knowledge among target groups under the CWPharma project (pharmaceutical industry, operators of MWWTPs, permitting and supervisory authorities) and other relevant stakeholders through national stakeholder meetings and reports.

Abstract

This report describes the contamination by pharmaceuticals and the environmental risks associated with their environmental levels in the Baltic Sea Region. Data were collected within the three-year project Clear Waters from Pharmaceuticals (CWPharma) funded by the EU’s Interreg Baltic Sea Region Programme. Sampling was performed in the river basin districts of Vantaanjoki in Finland, Pärnu in Estonia, Lielupe and Daugava in Latvia, Vistula in Poland, Warnow-Peene in Germany and Motala ström in Sweden. Analyses were performed on surface water, coastal water, sediment and soil that was fertilized with sewage sludge or manure. Analyses were also performed on emissions from municipal wastewater treatment plants, hospitals, pharmaceutical manufacturing facilities, landfills, and fish and livestock farms. In total, the study covered 13 365 data points from 226 samples as well as collection of human and veterinary consumption data of selected active pharmaceutical ingredients (APIs). Samples were screened for up to 80 APIs, representing antibiotics, antiepileptics, antihypertensives, asthma and allergy medications, gastrointestinal disease medications, hormones, metabolic disease medications, non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics, other cardiovascular medicines, psychopharmaceuticals, veterinary medicines and caffeine. The measured APIs were selected based on analytical capacity, consumption rates, identified data gaps and potential environmental risks. Literature and databases were screened for ecotoxicological information. Acute toxicity tests were performed for two APIs, nebivolol and cetirizine, for which ecotoxicological data were lacking. Measured environmental concentrations were compared with predicted no-effect concentrations (PNEC) to assess environmental risks of the selected APIs.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.