Kleyböcker, A. , Geist, L. , Schütz, J. , Kowslowski, J. , Kraus, F. , Muskolus, A. , Dünnebeil, A. (2020): Vakuum-Entgasung zur Ammonium-Abreicherung von Gärrückständen.

p 131 In: Pflanzenbauliche Verwertung von Gärrückständen aus Biogasanlagen. Online-Fachtagung. 15.09.2020

Abstract

Gülle und Gärreste werden häufig als Wirtschaftsdünger in der Landwirtschaft eingesetzt. Sie liefern sowohl organisches Material für den Boden als auch Stickstoff, der ein wichtiger Nährstoff für Pflanzen ist. Oft stimmt jedoch die gesetzlich vorgeschriebene, saisonale Ausbringung der Gülle nicht mit dem Zeitpunkt des tatsächlichen Stickstoffbedarfs der Pflanzen überein. Dies führt zu einem unerwünschten Verlust des Stickstoffs für die Pflanzen durch Emissionen ins Grundwasser (Nitrat) oder in die Atmosphäre (Ammoniak und/oder Lachgas). Besonders in Regionen mit einem hohen Gülleaufkommen und einer hohen Ausbringungsrate der Gülle kann es zu starken Umweltbelastungen kommen. Um die Zufuhr des organischen Materials für den Boden von der Stickstoffzufuhr aus der Gülle für die Pflanzen zu entkoppeln, wurde in dem EU geförderten Projekt Circular Agronomics (www.circularagronomics.eu) eine Pilotanlage entwickelt und konstruiert. Die Pilotanlage soll eine „stickstoffabgereicherte Gülle“ produzieren, die als Bodenverbesserer eingesetzt werden kann. Cirular Agronomics zielt darauf ab, zwischen 80 % und 90 % des Stickstoffs, der ursprünglich als Ammonium vorlag, aus der Gülle bzw. dem Gärrest zurückzugewinnen. In einem anschließenden Gaswäscher reagiert das Ammoniakgas mit Schwefelsäure zu einer Ammoniumsulfatlösung, welche ein typischer mineralischer Stickstoffdünger ist. Dieser kann dann ausgebracht werden, wenn die Pflanze den Stickstoff benötigt und umsetzen kann. Um den Prozess der Vakuumentgasung besser zu verstehen und die optimalen Prozessbedingungen zu untersuchen, wurden im Vorfeld Laborexperimente durchgeführt. In den Versuchen wurden der pH-Wert, die Druckbedingungen und die Prozesstemperatur variiert. Die Experimente zeigten, dass bei einem pH-Wert von 9.0, einer Temperatur von 60 °C und einem absoluten Druck von 190 mbar bis zu 88 % des Ammoniums aus dem Gärrest in Form von Ammoniak abgereichert wurden. Eine CO2-Strippung vor Anhebung des pH-Wertes auf pH 9.0, verringerte zudem die notwendige Natronlaugenzufuhr zur pH-Wert-Anhebung um 30 %. Basierend auf den Ergebnissen der Experimente wurden Schlussfolgerungen für ein optimales Design der Pilotanlage abgeleitet. Derzeit wird die Pilotanlage in Betrieb genommen und erste Versuche durchgeführt, deren Ergebnisse ebenfalls im Vortrag präsentiert werden.

Abstract

Vacuum degasification (VD) of ammonia from waste streams and subsequent production of nitrogen fertilizer can be one element of the effort towards closing the nitrogen (N) cycle and thus avoiding emissions harmful to the environment. This master’s thesis comprises a literature research for suitable substrates and laboratory experiments for the optimization of a design and experimental design of a VD pilot plant for ammonia recovery. Eight streams among the top 20 food waste streams in Europe and their associated streams, all digestates from digestion or co-digestion of animal waste streams, agricultural digestates and manures were identified as suitable substrates for N-recovery with VD. During 120 min of VD at pH 9.0, 190 mbar and 60 °C a total ammonia-N (TAN) removal rate of 0.81 ± 0.03 was achieved with an NaOH load of about 80 ml (L substrate)-1 in biogas digestate. The TAN removal rate during VD at 190 mbar and 60°C was dependent on pH with a dose response function. For efficient ammonia removal pH = 9.0 was necessary. Evidence for an ammonia volatilization inhibition at pH = 8.5 not explicable by the ammonia dissociation was found. At 158 % of the boiling pressure, 69 % of the TAN removal rate at boiling pressure was reached. Air stripping the hot substrate for 60 min lowered the NaOH load for maintaining pH 9.0 during VD by 30 %. Electrical conductivity (EC) and pH during the degasification treatment did not correlate. Alkaline hydrolysis could be the reason for pH decrease during VD at pH 9.5. In the pilot plant a pH sensor and a possibility to adjust the pH continuously should be installed. The pH for VD experiments at 60°C should be in the range 8.75–9.5. Pressures below the boiling pressure should not be excluded. Experiments with CO2 stripping should be conducted to exhaust the potential for NaOH saving.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.