Abstract

The microbial degradation of pharmaceuticals found in surface water used for artificial recharge is strongly dependent on redox conditions of the subsurface. Furthermore the durability of production wells may decrease considerably with the presence of oxygen and ferrous iron due to the precipitation of trivalent iron oxides and subsequent clogging. Field measurements are presented for oxygen at a bank filtration site in Berlin, Germany, along with simplified calculations of different oxygen pathways into the groundwater. For a twodimensional vertical cross-section, oxygen input has been calculated for six scenarios related to different water management strategies. Calculations were carried out in order to assess the amount of oxygen input due to (1) the infiltration of oxic lake water, (2) air entrapment as a result of water table oscillations, (3) diffusive oxygen flux from soil air and (4) infiltrating rainwater. The results show that air entrapment and infiltrating lake water during winter constitute by far the most important mechanism of oxygen input. Oxygen input by percolating rainwater and by diffusive delivery of oxygen in the gas phase is negligible. The results exemplify the importance of well management as a determining factor for water oscillations and redox conditions during artificial recharge.

Massmann, G. , Greskowiak, J. , Kohfahl, C. , Knappe, A. , Ohm, B. , Pekdeger, A. , Sültenfuß, J. , Taute, T. (2006): Evaluation of the hydrochemical conditions during bank filtration and artificial recharge in Berlin.

p 6 In: 5th International Symposium on Management of Aquifer Recharge / IHP-VI, Series on Groundwater. Berlin. 11. - 16.6.2005

Abstract

Hydrochemical conditions were evaluated at both bank filtration and artificial recharge sites in Berlin. All bank filtration sites show a strong vertical age stratification. Rather than showing a typical redox zoning with more reducing conditions in greater distance from the surface water, the redox zones are horizontally layered, with more reducing conditions in greater depth. This is believed to be an effect of the strongly alternating groundwaterlevels and by the age stratification. The redox conditions are generally more reducing at the bank filtration sites, mainly as a result of the longer travel times and operational differences. Redox conditions at all sites vary seasonally in particular at the artificial recharge site, which is mainly caused by temperature changes.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.