Abstract

To support decision makers in planning effective combined sewer overflow (CSO) management strategies an integrated modelling and impact assessment approach has been developed and applied for a large urban area in Berlin, Germany. It consists of an urban drainage model, a river water quality model and a tool for the quantification of adverse dissolved oxygen (DO) conditions in the river, one of the main stressors for urban lowland rivers. The coupled model was calibrated successfully with average Nash- Sutcliffe-efficiencies for DO in the river of 0.61 and 0.70 for two validation years. Moreover, the whole range of observed DO concentrations after CSO down to 0 mg L-1 is simulated by the model. A local sensitivity analysis revealed that in the absence of CSO dissolved oxygen principally depends on phytoplankton dynamics. Regarding CSO impacts, it was shown that 97% of the observed DO deficit can be explained by the three processes (i) mixing of river water with CSO spill water poor in DO, (ii) reduced phytoplankton activity due to CSO-induced turbidity and (iii) degradation of organic matter by heterotrophic bacteria. As expected, process (iii) turned out to be the most important one. However depending on the time lag after CSO the other processes can become dominant. Given the different involved processes, we found that different mitigation schemes tested in a scenario analysis can reduce the occurrence of critical DO deficits in the river by 30-70%. Overall, the study demonstrates that integrated sewer-river-models can be set up to represent CSO impacts under complex urban conditions. However, a significant effort in monitoring and modelling is a requisite for achieving reliable results.

Abstract

Combined sewer overflows (CSO) after heavy rainfall can cause acute depletions of dissolved oxygen (DO) in the Berlin River Spree. Further aggravation of ecological deficits can be expected from global climate change. A planning instrument for CSO impact assessment under different sewer management and climate conditions has been developed at Kompetenzzentrum Wasser Berlin. It couples the sewer model InfoWorks CS, the river water quality model Hydrax/QSim and an impact assessment tool. The planning instrument was validated for the years 2010 and 2011. Simulation results for the critical parameters discharge and DO concentrations in the Berlin River Spree agree well with measurements. Although not all observed DO deficits can be simulated accurately, the very good representation of processes related to the oxygen budget allows assessing relative changes in boundary conditions, e.g. from climate change or different CSO control strategies. The conducted scenario analysis indicates that the coupled sewer-rivermodel reacts sensitively to changes in boundary conditions (temperature, rainfall, storage volume and other CSO control strategies, etc.). Based on the simulation year 2007 – representing an extreme year with regards to CSO volume and critical conditions in the river – sewer rehabilitation measures planned to be implemented until 2020 are predicted to reduce total CSO volumes by 17% and discharged pollutant loads by 21 - 31%. The frequency of critical DO conditions for the most sensitive local fish species will decrease by one third. For a further improvement of water quality after the year 2020, the reduction of impervious surfaces emerges as a very effective management strategy where feasible. A reduction of the impervious connected area by 20% results in a decrease in the frequency of critical DO conditions by another third. The studied increase in surface air and water temperature as part of the climate change scenarios leads to a significant aggravation of DO stress due to background pollution in the Berlin River Spree, while acute DO depletions after CSO are barely affected. However, changes in rain intensity have a considerable effect on CSO volumes, pollutant loads and the frequency of critical DO concentrations. A general reduction of discharged pollutant loads by 60% based on the sewer status 2020 can prevent critical DO conditions in the Berlin River Spree, even for the exceptionally rain intense year 2007. A detailed analysis of river processes after CSO, has shown that the biodegradation of organic carbon compounds is the most important contributor to acute DO depletions in the Berlin River Spree. An additional impairment of DO conditions is caused by the inflow of oxygen free CSO spill water and suspended solids into the Berlin River Spree. In this report, CSO impacts under different management strategies or climate change conditions are assessed only for a part of the Berlin combined sewer system (although the main part) and for one exemplary year. An extension of the planning instrument to the entire combined sewer system would enable to evaluate the full impact of measures. For a robust prediction of future CSO impacts it is also recommended to test different simulation periods or conduct long-term simulations.

Matzinger, A. , Riechel, M. , Uldack, M. , Caradot, N. , Sonnenberg, H. , Rouault, P. , Pawlowsky-Reusing, E. , Heinzmann, B. , von Seggern, D. (2013): Modellbasiertes Werkzeug - immissionsbasierte Massnahmenplanung im Berliner Mischwassersystem.

p 46 In: Water reuse – overview for practitioners and case studies -DWA-Tagung zum Thema „Water Reuse“. Braunschweig. 4-5 November 2013

Abstract

Das vorgestellte modellbasierte Werkzeug bildet Mischwasserüberläufe aus dem Berliner Mischkanalsystem und deren kurzfristige Auswirkungen im Gewässer ab. Es soll für die Massnahmenplanung und die Berechnung von Zukunftsszenarien verwendet werden. Das Werkzeug zeigt eine gute Übereinstimmung mit Messungen bezüglich des Verlaufes der Sauerstoffkonzentration im Gewässer und des Auftretens kritischer Bedingungen für die Fischfauna.

Abstract

Das vorgestellte modellbasierte Werkzeug bildet Mischwasserüberläufe aus dem Berliner Mischkanalsystem und deren kurzfriste Auswirkungen im Gewässer ab. Es soll für die Maßnahmenplanung und die Berechnung von Zukunftsszenarien verwendet werden. Das Werkzeug zeigt eine gute Übereinstimmung mit Messungen bezüglich des Verlaufes der Sauerstoffkonzentration im Gewässer und des Auftretens kritischer Bedingungen für die Fischfauna. Eine Szenarienuntersuchung für ein Extremjahr zeigt, dass durch die bis zum Jahr 2020 geplante Stauraumvergrößerung die Häufigkeit fischkritischer Bedingungen im Gewässer bereits um ein Drittel reduziert werden kann. Eine Reduktion um ein zusätzliches Drittel wäre durch weitergehende Maßnahmen im Bereich der Entsiegelung möglich. Die verbleibenden fischkritischen Bedingungen sind das Ergebnis von sehr starken Regenereignissen und können kaum verhindert werden. Eine durch Klimaveränderung erhöhte oder reduzierte Regenintensität im Sommer hätte starken Einfluss auf das Auftreten fischkritischer Bedingungen; die erwartete Temperaturerhöhung würde hingegen hauptsächlich die Sauerstoffsituation bei Trockenwetter verschlechtern.

Uldack, M. (2013): Modelling the impacts of combined sewer overflows on the Berlin River Spree.

Master Thesis. Fakultät III Prozesswissenschaften, Institut für Technischen Umweltschutz. Technische Universität Berlin

Abstract

Combined sewer overflows (CSO) after heavy rainfall can cause acute depletions of dissolved oxygen (DO) in the Berlin River Spree. A planning instrument for CSO impact assessment has been developed in the framework of the research project MIA-CSO at the Kompetenzzentrum Wasser Berlin. This instrument couples the sewer model InfoWorks CS, the water quality model Hydrax/QSim and an impact assessment tool. Within this thesis it is tested for various CSO management strategies and climate change scenarios. The coupled sewer-river-model InfoWorks CS-Hydrax/QSim was validated for the years 2010 and 2011. Simulation results for the critical parameters discharge and DO concentrations in the Berlin River Spree agree well with measurements. Although not all observed DO deficits can be simulated accurately, the very good representation of processes related to the oxygen budget allows assessing relative changes in boundary conditions, e.g. from different CSO control strategies. The conducted scenario analysis indicates that the coupled sewer-river-model reacts sensitively to changes in boundary conditions (temperature, rainfall, storage volume and other CSO control strategies, etc.). Based on the simulation year 2007 - representing an extreme year with regards to CSO volume and critical conditions in the river - sewer rehabilitation measures planned to be implemented until 2020 are predicted to reduce total CSO volumes by 17% and discharged pollutant loads by 21-31%. The frequency of critical DO conditions for the most sensitive local fish species (<2 mg/L) will decrease by one third. For a further improvement of water quality after the year 2020, the reduction of impervious surfaces emerges as a very effective management strategy. A reduction of the impervious connected area by 20% results in a decrease in the frequency of critical DO conditions by another third. The studied increase in surface air and water temperature as part of the climate change scenarios leads to a significant aggravation of DO stress due to background pollution in the Berlin River Spree, while acute DO depletions after CSO are barely affected. However, changes in rain intensity have a considerable effect on CSO volumes, pollutant loads and the frequency of critical DO concentrations. The extended sensitivity analysis shows that a general reduction of discharged pollutant loads by 60% based on the sewer status 2020 can prevent critical DO conditions in the Berlin River Spree, even for the exceptionally rain intense year 2007. Further, it has been shown that the entry and biodegradation of organic carbon compounds is the most important process for acute DO depletions after CSO. However, mixing of oxygen free spill water with the Berlin River Spree provokes an additional impairment of DO conditions. In the framework of this thesis, CSO impacts under different management strategies or climate change conditions are only assessed for a part of the Berlin combined sewer system and for one exemplary year. Before applying the presented instrument for planning specific measures it is proposed to expand the model area and simulated time period.

Matzinger, A. , Mutz, D. , Uldack, M. , Remy, C. , Rouault, P. , Pawlowsky-Reusing, E. , Gnirß, R. , Lemm, K. , Bartholomäus, C. , Draht, K. , Keller, S. (2013): Maßnahmen zur Reduktion der Nährstoffeinträge urbaner Standorte.

p 13 In: 29. Jahrestagung der Deutschen Gesellschaft für Limnologie e.V. (DGL). Potsdam, Germany. 9-13 September 2013

Abstract

Im Rahmen eines Forschungsprojektes wurden die Auswirkungen von Mischwasserentlastungen auf die Berliner Stadtspree untersucht und ein Planungsinstrument zur Reduzierung der Auswirkungen von Mischwasserüberläufen entwickelt.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.