Staub, M. , Moreau-Le Golvan, Y. , Grützmacher, G. (2012): A catalogue and matrix of initiatives as a toolbox for utilities to enhance their preparedness for climate change.

p 4 In: IWA World Congress on Water, Climate and Energy. Dublin, Ireland. 13-18 June 2012

Abstract

Water is one of the sectors where climate change will be most pronounced, but at the same time it is one of the sectors where numerous adaptation possibilities exist. While the extents of the impacts are not known yet, it is the right period to prepare the utilities to adapt to the global changes in an urbanizing world. Adaptation to climate change, though not always perceived as such, is already reality in the urban water sector. In this context, within the framework of the international research project PREPARED funded by the European Commission and, among others, Veolia Water and local utilities, a toolbox consisting in a catalogue and a dynamic matrix of initiatives in the water sector is being compiled by the Berlin Centre of Competence for Water, KWB.

Abstract

Previously, the analysis of energy demand for wastewater treatment was often limited to one-dimensional analyses of electricity demand. How ever, a comprehensive analysis requires the inclusion of all different contributions to energy demand. The Life Cycle Assessment (LCA) methodology defined in ISO 14040/44 is a suitable tool for this task. With it, all different primary and secondary energy demands can be quantified and assessed using consistent indicators, complemented by an assessment of other environmental impacts such as the carbon footprint.

Abstract

The Water supply and sanitation Technology Platform (WssTP) was initiated by the European Commission in 2004. It is led by industries in collaboration with academics, research organisations and water users to help structure the European Research Area and identify R&D needs for the water sector. In December 2008, the board of the WssTP identified the need to create a Task Force on Climate Change in order to build a working group focused on the issue and able to assist the EU Commission in the related Calls for Projects. The Task Force on Climate Change did a review on the research and technology development (RTD) needs related to each of the WssTP topics, highlighting the challenges they will face in a climate change context. This paper is based on the review carried out and presents its main conclusions. The RTD topics identified involve a broad range of expertise areas and can be divided into two main groups: mitigation and adaptation. The latter will be brought to the fore in this paper.

Abstract

Continuous and quasi-continuous odour monitoring solutions have the potential to provide essential tools to support the whole odour control procedure in sewer networks. Hence, there is a need for continuous measurement and supervision of odour emissions with technical measurement systems. Objective of this investigation is the identification of instruments on the market which have the potential to be applied for odour monitoring from wastewater collection systems or wastewater treatment works. Generally one can distinguish between following methods of odour measurement: (i) Sensory methods: Measurement of odour concentration by olfactometry (evaluation by human noses), (ii) Analytical methods: (ii a) Selected sensors: Measurement of specific single odorants or surrogate parameters (e.g. H2S-measurement) (ii b). Gas chromatography, mass spectrometry, optical sensors: Measurement or quantification of a spectrum of several gas components, (ii c) Multigas-sensor arrays: Measurement of overall odour parameters by means of unspecific, broadband multigas-sensor arrays. Only the mentioned analytical methods provide the possibility of continuous measurements. They however do not all consider the sensory component of odour (perceived effect). Within this report methods (ii b) and (ii c) will be covered. The report provides an introduction to the principle of measurement, briefly discussing examples of sampling methods and data analysis methods and gives lists of collected odour monitoring systems, tabulary providing specifications from literature, manufactures and vendors.

Matzinger, A. , Fischer, H. , Schmid, M. (2012): Modellierung von biogeochemischen Prozessen in Fließgewässern.

p 1 In: Hupfer M., Calmano W., Fischer H. & Klapper H. [eds.], Handbuch Angewandte Limnologie – 29. Erg.Lfg. 5/12 1. Wiley-VCH Verlag. Weinheim

Abstract

Flussökosysteme basieren auf dem komplexen Zusammenspiel physikalischer und biogeochemischer Prozesse. Ein mögliches Hilfsmittel zum Verständnis dieses Zusammenspiels sind Fließgewässergütemodelle (FGM): numerische, dynamische Modelle, welche die Interaktion empirisch bekannter biogeochemischer Prozesse abbilden und eine prozessbasierte Auswertung zulassen. FGM, wie sie im Folgenden verstanden werden, betrachten deterministische, biogeochemische Prozesse, die im Gewässer ablaufen, beispielsweise das Wachstum von Algenbiomasse auf der Grundlage von verfügbaren Nährstoffen und Licht. Sie unterscheiden sich dadurch deutlich von den folgenden Modelltypen, die in diesem Artikel nicht behandelt werden: (i) Rein hydraulische Modelle, welche die Strömung, Wasserstände sowie turbulente Mischung in Fließgewässern berechnen (z. B. das Modell EFDC der amerikanischen Umweltbehörde EPA (HAMRICK 1992) oder das kommerzielle Modell Telemac (GALLAND et al. 1991)). Eine Berechnung des Abflusses ist zwar die Basis aller FGM, wird aber im Folgenden nur kurz für die eindimensionale Näherung beschrieben. (ii) Stoffflussmodelle, welche eine Berechnung der Stofffrachten zum Ziel haben und Hydraulik und Transformationsprozesse im Gewässer nicht oder stark vereinfacht abbilden. Solche Modelle erlauben eine Aggregation von Stofffrachten, die über das eigentliche Gewässer hinausgeht, beispielsweise für gesamte Einzugsgebiete (z. B. MONERIS, BEHRENDT et al. (2000), oder SWAT, NEITSCH et al. (2001)) oder für städtische Wasserkreisläufe (MÖLLER et al. 2008). (iii) Modelle, die multitrophische Interaktionen in Fließgewässern abbilden und dadurch die Auswertung von Nahrungsketten ermöglichen (z. B. WOOTTON et al. 1996). Solche „multitrophischen Modelle“ werden hauptsächlich für akademische Fragestellungen eingesetzt. Im Gegensatz zu FGM betrachten sie ausschließlich die Interaktionen zwischen Spezies ohne Berücksichtigung deterministischer, biogeochemischer Prozesse. FGM koppeln eine hydraulische Modellierung des Abflusses in Fließgewässern mit der eigentlichen Gütemodellierung. Darin sind sie eng verwandt mit Gütemodellen für Seen, die im Artikel III-5.2 „Komplexe dynamische Seenmodelle“ beschrieben werden. Der große Unterschied zur Seenmodellierung ist der Umstand, dass FGM biogeochemische Prozesse in abfließenden Wasserpaketen betrachten. Die einzelnen Wasserpakete sind dadurch weitgehend unabhängig voneinander (abgesehen von der Dispersion, s. Abschnitt 3.2). Zudem beträgt die Fließzeit dieser Wasserpakete selbst in großen Flüssen lediglich Tage bis wenige Wochen. Dadurch ist die Entwicklung der Wasserqualität in FGM meist sehr viel stärker von den Randbedingungen an den oberen Rändern abhängig als bei Seenmodellen. Ein Einfluss der zurückliegenden Wasserqualität ist in FGM über das Sediment möglich, welches durch die meist geringen Wassertiefen ganzjährig einen Effekt auf die Wasserqualität im Fließgewässer haben kann. Wie bei Seenmodellen können Fließgewässer dreidimensional oder in zwei- oder eindimensionaler Vereinfachung simuliert werden. Während dreidimensionale hydraulische Modelle oft eingesetzt werden, gibt es kaum Beispiele von dreidimensionalen Güterechnungen. Neben dem Rechenaufwand verhindern auch der große Bedarf an Messungen für Kalibrierung und Validierung der Modellergebnisse sowie der große Aufwand bei der Datenauswertung einen häufigeren Einsatz. Entsprechend wird in der Folge in erster Linie auf eindimensionale Modellanwendungen eingegangen, also auf Modelle, die eine räumliche Dimension in Fließrichtung und eine zeitliche Dimension umfassen. Die beschriebenen biogeochemischen Prozesse sind aber auf höherdimensionale Modelle übertragbar. In dem folgenden Artikel wird zunächst auf die Ziele (Abschnitt 2) sowie den grundsätzlichen Aufbau von FGM (Abschnitt 3) eingegangen, wobei die Abbildung biogeochemischer Prozesse in etwas größerer Tiefe beschrieben wird. Danach wird auf existierende Modellsoftware (Abschnitt 4) sowie praktische Empfehlungen zum Vorgehen bei deren Gebrauch (Abschnitt 5) eingegangen. Zur konkreten Anwendung folgen zwei Beispiele der Modelle QSim und AQUASIM (Abschnitt 6). Da dieser Artikel nur einen groben Überblick über FGM geben kann, wird zum Schluss auf weiterführende Literatur verwiesen, die zukünftige Modellanwender unterstützen kann.

Abstract

This report presents practical field aspects gained during two years of monitoring with state-of-the-art spectrometers and ion-selective sensors, combining (i) continuous measurements of the quality and flow rates of combined sewer overflows (CSO) with (ii) continuous measurements of water quality parameters within the urban stretch of the River Spree. It describes the set-up and the implementation of the monitoring and evaluates the outcomes and experiences towards “lessons learnt”. The challenge of CSO monitoring is their event-based and highly dynamic nature during rain events. Applied online sensors allow dynamic measurements of CSO and water quality impacts for a wide range of parameters. However, the success of online monitoring campaigns depends highly on three main considerations. Firstly, the representativity of the measurement station. The location of the probe must be representative of the concentration over the entire cross section of the sewer or the river. Further criteria have to be considered for the selection of the monitoring sites (e.g. easy access to the probes for maintenance) (chapter 2). Secondly, the quality of the raw measurements. External conditions can influence the quality of measurements and lead to wrong values or outliers. – To avoid drifts, probes need to be cleaned and checked regularly. We found that monitoring stations must be visited at least once a week for functional check-ups. During the two years of monitoring, the maintenance methodology have been continously improved to ensure the best measurement conditions (chapter 3). – But even under state-of-the-art operation of the probes, some values can be affected by errors and lead to misinterpretation. Thus, a validation step is required to detect wrong values and separate them from valid values. Given the large amount of data, an Access-based tool has been developed to support semi-automatic validation of monitoring data (chapter 4). Lastly, the calibration of raw measuments and the determination of uncertainties is critical. Online probes were not able to provide accurate measurements without being calibrated to local conditions with parallel laboratory measurements (online probe refers in this document to spectrometer and ISE-Probe). A Monte-Carlo method was adapted to perform regressions between raw measurement and lab values, which allows considering both uncertainties of sensor and lab chain. For instance, total uncertainty of the UV/VIS probe was between 15 and 30% for chemical oxygen demand (COD), accounting for errors from sensor, laboratory and field (representativity of site). The uncertainties in concentration and flow measurements lead to an uncertainty in CSO COD load between 20 and 70%, depending on the average concentration and flow of the event (chapter 5). In order to gain grab samples and provide high quality calibration, an automatic sampler has been installed at the sewer monitoring. However, for operational purposes, a sewer operator will expect to gain quality online data without the effort and costs of sampling each CSO. In order to estimate the optimal sampling effort, we investigated how many events (or how many lab measurements) are necessary for calibration depending on aimed at uncertainty. From a set of 12 sampled CSO events, we simulate all possible random combinations of events and calculated each time the resulting measurement uncertainty (chapter 5.5). Results shown in Figure A indicate that at least 7 random events need to be sampled to calibrate the probe reducing uncertainties of COD measurement under 30%. It has to be noted that the concentration range of the grab samples has a high influence on the quality of the calibration. A similar analysis considering only events with high lab variations (range > 500 mg/l) showed that then only 4 events must be sampled to reduce uncertainty under 30%. Considering these results, we recommend parallel short sampling campaigns with autosamplers (grab sampling) for application of spectrometers for CSO monitoring. If the lab measurements cover the entire range of water quality variations, a minimum of 3-4 rain events should be sampled to build an accurate calibration function with acceptable uncertainty. If sampled concentration range is exceeded by later measurements, new sampling campaigns should be planned. Since both sensor and autosampling results were available, CSO COD loads have been calculated using both spectrometer and lab values (chapter 6). Results indicate that load calculated with lab samples are within the error range of the loads calculated with spectrometer values. However, the frequency of grab sampling should be less than 10 minutes, to match concentration peaks and quick quality variations in our case. For the purpose of CSO load calculation, autosampler-based monitoring remains a cost-effective alternative to online probes. For a dynamic description of CSO (pollutant sources, mass/flow balance, etc.), autosampler-based data are limited by the minimal sample frequency and the sampling capacity. Investment and effort of online monitoring can overcome these limitations. For river monitoring, online probes enable measuring water quality variations with an acceptable uncertainty, if the probes are properly calibrated. Here, autosamplers are clearly limited by their sampling capacity as the impacts are spread on several days in the case of the River Spree. Since no autosampler was available during the two monitoring years no clear correlation could be established for the spectrometer parameters (TSS, COD, BOD). As the manual approach often fails to catch CSO impacts, an autosampler has been purchased for the last monitoring year in 2012. For NH4 + measurement, the ISE probe has been successfully calibrated performing monthly NH4 measurements in a bucket of river water spiked with ammonium standard solution to reach values in the range expected during CSO (1-2 mg/l).

Staub, M. , Vautrin, N. , Rustler, M. (2012): OptiWells-1 Final Synthesis Report.

Kompetenzzentrum Wasser Berlin gGmbH

Abstract

This report concludes the first phase of the project “OptiWells”, which focuses on the optimization of drinking water well field operation with respect to energy efficiency. The purpose of this document is to provide sound answers to questions that utilities and well field operators are facing. Thus, it is built as a thematically organized sequence of main questions and answers rather than an extensive manuscript-like report. In total, 13 questions are addressed in detail, while 3 main “unanswered” questions and issues are detailed at the end of this report. The focus of this report is identical to the project’s focus: it addresses energy efficiency issues within the well field system. Thus, the main area of focus of the project lies in the interactions between the groundwater, the well, the pump and raw water pipe system. Drinking water treatment, as well as water distribution is not included in this study. This document, in combination with the other project deliverables, shall provide an overview of the potential optimizations for drinking water well fields. It shall yield both answers about saving potentials in general, and give some concrete examples from a French well field. By doing so, it shall assist the identification of solutions for an energyefficient groundwater abstraction, and provide a basis for a sound, practical methodology for well field energy audits and assessments.

Vautrin, N. (2012): Optimization of abstraction costs for a drinking water well field.

Diploma Thesis. Groundwater. Ecole Nationale Supérieure de Géologie de Nancy

Abstract

This work was carried out within the framework of the project OPTIWELLS at the Kompetenzzentrum Wasser Berlin (KWB), a non-profit network society for water research and science transfer. The project addresses the modelling of a well field in order to minimise its energy demand. The first phase of the project is a feasibility study to identify the optimization possibilities of the energy demand. The first part of the study concerns the design and testing of a hydraulic model. At the beginning it was implemented on MS Excel and after with the help of Epanet, an opensource software. Data from the operator and manufacturers as well as measured data, gained during a site audit, were used to calibrate the model. Goals were to understand how the well field was working and to identify the energy demand drivers. The second part of the study concerned the choice and the implementation of scenarios with different operational conditions for the well field. Scenarios were focused on two aspects: the change of boundary conditions and the study of possible investments. A cost comparative assessment was carried out to estimate the payback times of the investigated scenarios. Results and according recommendations were communicated to the well field manager.

Staub, M. , Vautrin, N. , Rustler, M. , Grützmacher, G. , David, B. , Soyeux, E. (2012): Potentials for energy savings through drinking water well field optimisation.

p 11 In: 7th Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES). Ohrid, Macedonia. 1-7 July 2012

Abstract

The optimisation of drinking water well field operation may significantly reduce the energy demand and associated costs, but is seldom applied in a systematic methodological approach. In this study, a well field was analysed using a coupled model that takes into account aquifer, wells, pumps and raw water pipes. This coupled approach enabled to identify and quantify the key energy demand drivers. The geometrical elevation was the most important driver, while pipe network losses were in the same order of magnitude as aquifer- and well losses. Using the modelling tool, the most energyefficient well field operation scheme could be derived and energy savings of up to 17% may be achieved by optimising well field operation only whereas further 5% may be saved by investing in new pump equipment. These findings show the potentials for significant energy savings in the field of drinking water abstraction.

Abstract

Im Rahmen eines Forschungsprojektes wurden die Auswirkungen von Mischwasserentlastungen auf die Berliner Stadtspree untersucht und ein Planungsinstrument zur Reduzierung der Auswirkungen von Mischwasserüberläufen entwickelt.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.