Rustler, M. , Busse, J. , Grützmacher, G. , Lischeid, G. (2012): Application of a data-driven approach for well field modelling.

NA In: 10th International Conference on Hydroinformatics. Hamburg, Germany. 14-18 July 2012

Stüber, J. , Miehe, U. (2012): Combining ozonation and ceramic membrane filtration for tertiary treatment..

p 27 In: 14th Aachener Membran Kolloquium. Aachen, Germany. 7-8 November 2012

Hattke, C. (2012): Evaluation of different cleaning methods on the fouling rate of organic membranes..

Diploma Thesis. Water Engineering. Technische Universität Berlin

Abstract

The usage of membranes in wastewater treatment often leads to problems with scaling and fouling, which results in an irreversible loss of membrane permeability. Various pretreatments as well as mechanical and chemical cleaning possibilities are described and evaluated in order to ensure continuous operation. The cleaning has been performed by a sequential backwash with filtrate. In addition, the membrane was cleaned chemically to restore the flux to an acceptable level. The effect of chemically enhanced backwash (CEB) and cleaning in place (CIP) has been considered in more detail. The UF membranes are typically cleaned by soaking in alkali, acids and/or oxidizing solutions. Sodium hydroxide (NaOH), sodium hypochlorite (NaOCl) and acid sulphur (H2SO4) were used as cleaning agents. Furthermore, the impact of pre-treatment by pre-ozonation and subsequent coagulation on the performance of a polyether sulphone ultrafiltration membrane has been investigated in a pilot plant. Ozone is used in water treatment for the oxidation of organic substances, which leads to a reduction of organic fouling. A subsequent coagulation is applied to form stable aggregates out of biopolymers, which are most relevant for membrane fouling in order to backwash them easily from the surface and the membrane pores. Both pre-treatments have an influence on an improved filtration performance. The scope of the current paper is to critically evaluate the impact on the hydraulic and chemical treatment of an organic membrane and to find out which cleaning strategy is the best against membrane fouling.

Stein, R. (2012): Advanced wastewater treatment by the implementation of a ceramic membrane. Studienarbeit.

Internship Report. environmental technology. Technische Universität Berlin

Abstract

This paper is one of the results, developed within the project OXERAM II by the Kompetenzzentrum Wasser Berlin. A pilot plant, equipped with a full (microfiltration) Berlin/Ruhleben. During the is operated for advanced wastewater project, different scale monolithic ceramic membrane treatment at WWTP pre-treatments, namely coagulation and the combination of coagulation and ozonation are applied. Multi-filtration trials in dead-end mode and constant flux operation are performed for over 6 months, with varying operational parameters like flux, time of filtration, dosages of coagulant and ozone. Operational behaviour is evaluated through the evolution of trans-membrane pressure via time. Also total and irreversible fouling rates are calculated showing benefits within the combined pre-treatment, regarding membrane fouling and stable operation at high recoveries (98 %). The application of 15 mgO3 · L-1, respectively a specific ozone dosage from 1.0 to 1.4 mgO3 · (mgDOC)-1 leads to a total fouling rate reduction of 75 %. LC-OCD analysis is furthermore used for a more detailed view on changes in DOC, especially biopolymers. Sampling of the pilot plants influent and effluent water is additionally used for the evaluation of treatment efficiency, e.g. disinfection and in particular phosphorous, where emissions are reduced to 20 ± 5 µg P · L-1 in accordance with the European Water Framework Directive (Directive 2000/60/EC).

Seis, W. (2012): Risk assessment auf Braunschweig wastewater reuse scheme.

Kompetenzzentrum Wasser Berlin gGmbH

Abstract

Risk-based management approaches are more and more used in the water sector and are promoted by the WHO. As a first step towards an overall risk-based management approach of the agricultural wastewater reuse concept of Braunschweig this report conducts quantitative microbial risk assessment (QMRA) and quantitative chemical risk assessment (QCRA) of heavy metals. Scenarios for microbial risks are conducted for fieldworkers, nearby residents and children ingesting soil using a 1000 trial Monte Carlo Simulation. As a tolerable value of risk an additional disease burden of 1 µDALY is set following the current WHO guidelines. For heavy metals impacts on the terrestrial and aquatic ecosystems as well as on human health are assessed using the methods outlined in the European Union Technical Guidance Document on Risk Assessment (TGD). Concerning microbial risks risk-based targets are set in terms of additional required pathogen reduction in the STP Steinhof. Based on the model results an additional reduction of 1.5log units is derived for viruses, for which the highest annual risks of infection per person per year (pppy) is calculated in all scenarios. Concerning heavy metals the model indicates an increasing tendency of soil concentrations over time and identifies Cd as the only metal which is currently of concern. Risk reduction measures should be considered for this metal. Recommendations are given concerning necessary validation and additional monitoring for eliminating uncertainties within the model.

Abstract

The research project CoDiGreen (2010-2012) targets the optimisation of energy and nutrient recovery in the wastewater treatment schemes of Braunschweig and Berlin. Therefore, pilot experiments are conducted to test the effect of addition of co-substrates (grass silage, topinambur) and the thermal hydrolysis of excess sludge on the biogas yield of anaerobic digestion. In addition, co-digestion of grass silage is also tested in a full-scale digestor of the wastewater treatment plant (WWTP) Braunschweig-Steinhof. Beside the experimental part, the environmental footprint of the wastewater treatment scheme in Braunschweig and the sludge treatment line in WWTP Berlin-Waßmannsdorf is analysed with Life Cycle Assessment (LCA) to identify potentials for optimisation and assess selected technical options in their effects on the environmental profile. Finally, a market review of the concept of agricultural reuse of effluent and sludge in Braunschweig is conducted to get an overview of the market situation, and a risk assessment is initiated to identify potential risks associated with this practice. The results of the pilot experiments show that both the addition of co-substrates and thermal hydrolysis can substantially increase the biogas yield and quality (CH4 content) during mesophilic digestion (HRT = 20d). Methane yields can be increased by 10%, 9% and 13% for thermal hydrolysis of excess sludge, addition of grass silage (+10% TS), and the combination of both (if the methane yield is only related to the VS of the sludge, the increase was 10%, 31% and 38%). A two-step digestion with intermediate hydrolysis (“DLD”) yields +19% CH4. No exceedance of legal requirements for inorganic and organic pollutants can be detected, whereas lab-analysis indicate positive impacts on sludge dewaterability and polymer demand for dewatering. For a full scale realisation of co-digestion it can be estimated that a 100.000 PE WWTP would require approximately 30 ha of extensively cultivated area to add +10% VS of grass substrate. However, the promising results of co-digestion with grass cannot be confirmed in full-scale trials, where only -8% of biogas yield can be measured (+2% if related to the VS of the sludge only). Even though the technical feasibility of grass addition can be shown, operational difficulties (fibre size, hydraulic mixing, low HRT) seem to prevent the realisation of the maximum potential of grass addition in full-scale. The environmental assessment of the systems in Berlin and Braunschweig reveals a high degree of energy production in both systems, lowering associated impacts of carbon footprint and other environmental impacts. However, potentials for optimisation are identified in terms of energy production and nutrient recovery, and recommendations for the future testing of technical options are given based on the scenario analysis within the LCA. Environmental benefits of the reuse approach in Braunschweig are quantified and relate mostly to the lower discharge of nutrients and other pollutants into surface waters. The normalised environmental profile underlines the primary functions of wastewater treatment (= protection of surface waters), which should not be compromised while optimising energy demand and carbon footprint.

Abstract

Das Forschungsprojekt CoDiGreen (2010-2012) zielt auf eine Optimierung der Rückgewinnung von Energie und Nährstoffen in der Abwasserbehandlung in Braunschweig und Berlin. Dafür werden in Pilotversuchen die Auswirkungen einer Zugabe von Co-Substraten (Grassilage, Topinambur) und einer thermischen Druckhydrolyse des Überschussschlamms auf den Biogasertrag der Faulung untersucht. Zusätzlich wird die Co-Vergärung von Grassilage im großtechnischen Maßstab in einem Faulturm des Klärwerks Braunschweig-Steinhof getestet. Neben dem experimentellen Teil wird über eine Ökobilanz der ökologische Fußabdruck des Abwassersystems in Braunschweig und der Schlammbehandlung im Klärwerk Berlin-Wassmannsdorf analysiert, um Optimierungspotential zu erfassen und anhand ausgewählter Szenarien zu bewerten. Abschließend werden vergleichbare Konzepte der landwirtschaftlichen Wiederverwendung von Klarwasser und Schlamm in einer Marktstudie ermittelt und über eine Risikobewertung potentielle Gefahren dieses Systems identifiziert. Die Pilotversuche zeigen, dass sowohl die Zugabe von Co-Substraten als auch die thermische Hydrolyse einen substantiellen Gewinn an Biogasmenge und –qualität (CH4Gehalt) in einer mesophilen Faulung (Verweilzeit: 20d) ermöglichen kann. Die Methanerträge können um 10%, 9% und 13% durch thermische Hydrolyse von Überschussschlamm, Zugabe von Grassilage (+10% FS) und eine Kombination beider Maßnahmen gesteigert werden (sofern der Methanertrag lediglich auf den oTR des zugeführten Schlamms bezogen wird, betrug die Steigerung 10%, 31% und 38%). Eine zweistufige Faulung mit zwischengeschalteter Hydrolyse („DLD“) erbringt +19% CH4. Für anorganische und organische Schadstoffe werden dabei vorgeschriebene Grenzwerte der aktuellen Klärschlammverordnung nicht überschritten. Weiter zeigen Laboranalysen einen positiven Effekt auf die Entwässerbarkeit des Schlamms und den Bedarf an Polymeren. Leider können die vielversprechenden Ergebnisse der Co-Vergärung mit Gras in der Großtechnik nicht bestätigt werden. Für eine großtechnische Realisierung einer Co-Vergärung lässt sich abschätzen, dass für 100.000 EW ca. 30 ha extensiv bewirtschafteter Fläche erforderlich sind, um 10% oTR an Gras in Bezug zum oTR des Rohschlamms zu erzeugen. Leider können die vielversprechenden Ergebnisse der Co-Vergärung mit Gras in der Großtechnik nicht bestätigt werden, in der nur -8% Biogasertrag gemessen werden (+2% wenn der Methanertrag lediglich auf den oTR des zugeführten Schlamms bezogen wird). Obwohl die technische Machbarkeit der Graszugabe gezeigt werden kann, scheinen betriebliche Probleme (Größe der Fasern, hydraulische Durchmischung, niedrige Verweilzeit) die Umsetzung des maximalen Potentials der Graszugabe in der Großtechnik zu verhindern. Die Bewertung der Umweltwirkungen der Systeme in Berlin und Braunschweig zeigt eine hohe Eigenenergieerzeugung in beiden Systemen, so dass dadurch der Treibhauseffekt und andere relevante Umweltwirkungen vermindert werden. Dennoch kann noch Optimierungspotential bei der Energie- und Nährstoffrückgewinnung aufgezeigt werden, zu dessen Erschließung auf der Grundlage einer Szenarienanalyse Empfehlungen formuliert werden. Die Umweltvorteile der Wiederverwendung in Braunschweig zeigen sich vor allem in einer verminderten Emission von Nähr- und Schadstoffen in die Gewässer. Die Normalisierung der Umweltwirkungen unterstreicht die Bedeutung der Primärfunktion der Kläranlage (= Schutz der Oberflächengewässer), die durch Optimierung von Energiebedarf und Treibhausgasemissionen nicht eingeschränkt werden sollte. Die Risikobewertung der Braunschweiger Systems folgt dem HACCP-Konzept und quantifiziert Risiken für die menschliche Gesundheit durch Krankheitserreger und Schwermetalle in der Landwirtschaft und ökologische Risiken durch Schwermetalle. Potentielle Risiken der Wiederverwendung werden auf Grundlage quantitativer Modelle von Umweltverhalten und Exposition identifiziert (Viren, Cadmium für Menschen, Zink für Ökosystem) und sollten durch entsprechende Messprogramme überwacht werden. Schließlich werden basierend auf den Projektergebnissen Empfehlungen zur Optimierung der Energie- und Nährstoffrückgewinnung in der Abwasserbehandlung in Berlin und Braunschweig formuliert, um letztlich die negativen Umweltwirkungen zu minimieren und potentielle Risiken im Betrieb zu vermeiden.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.