Abstract

Two parallel membrane bioreactors (2m³ each) were operated over a period of 2 years. Both pilots were optimised for nitrification, denitrification, and enhanced biological phosphorous elimination, treating identical municipal waste water under comparable operating conditions. The only constructional difference between the pilots was the position of the denitrification zone (pre-denitrification in pilot 1 and post-denitrification in pilot 2). Despite identical modules and conditions, the two MBRs showed different permeabilities and fouling rates. The differences were not related to the denitrification scheme. In order to find an explanation for the different membrane performances, a one-year investigation was initiated and the membrane performance as well as the operating regime and characteristics of the activated sludge were closely studied. MLSS concentrations, solid retention time, loading rates, and filtration flux were found not to be responsible for the different performance of the submerged modules. These parameters were kept identical in the two pilot plants. Instead, the non-settable fraction of the sludges (soluble and colloidal material, i.e. polysaccharides, proteins and organic colloids) was found to impact fouling and to cause the difference in membrane performance between the two MBR. This fraction was analysed by spectrophotometric and size exclusion chromatography (SEC) methods. In a second step, the origin of these substances was investigated. The results point to microbiologically produced substances such as extracellular polymeric substances (EPS) or soluble microbial product.

Abstract

Bank filtration and artificial recharge provide an important drinking water source to the city of Berlin. Due to the practice of water recycling through a semi-closed urban water cycle, the introduction of effluent organic matter (EfOM) and persistent trace organic pollutants in the drinking water is of potential concern. In the work reported herein, the research objectives are to study the removal of bulk and trace organics at bank filtration and artificial recharge sites and to assess important factors of influence for the Berlin area. The monthly analytical program is comprised of dissolved organic carbon (DOC), UV absorbance (UVA254), liquid chromatography with organic carbon detection (LC-OCD), differentiated adsorbable organic halogens (AOX) and single organic compound analysis of a few model compounds. More than 1 year of monitoring was conducted on observation wells located along the flowpaths of the infiltrating water at two field sites that have different characteristics regarding redox conditions, travel time, and travel distance. Two transects are highlighted: one associated with a bank filtration site dominated by anoxic/anaerobic conditions with a travel time of up to 4–5 months, and another with an artificial recharge site dominated by aerobic conditions with a travel time of up to 50 days. It was found that redox conditions and travel time significantly influence the DOC degradation kinetics and the efficiency of AOX and trace compound removal.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.